1
|
Nano-Encapsulated Antioxidant: Retinoic Acid as a Natural Mucosal Adjuvant for Intranasal Immunization against Chronic Experimental Toxoplasmosis. Trop Med Infect Dis 2023; 8:tropicalmed8020106. [PMID: 36828522 PMCID: PMC9962073 DOI: 10.3390/tropicalmed8020106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The tight relationship between immunity and retinoid levels provides evidence on the critical role of retinoic acid (RA) in regulating immune activity, especially the mucosal one. Mucosal immune response is the key for determination of the outcome of infection, particularly against intracellular mucosal pathogens such as Toxoplasma gondii, where it plays a crucial role as a sentinel against parasite invasion. Herein, the immunomodulatory adjuvant role of RA was evaluated for prophylactic vaccination against chronic Toxoplasma infection. A quantity of 15 µg of RA pre-encapsulated with lipid-based nanoparticles (SLNs) was intranasally used in three doses, two weeks apart, as an adjuvant to the Toxoplasma lysate antigen (TLA). Afterward, mice were infected with 20 cysts of T. gondii (ME49 strain) and were sacrificed at the 4th week post-infection. Parasitological, immunological, biochemical, and histopathological studies were applied as vaccine efficacy measures. The protective role of the tested vaccine was noted using the statistically marked reduction in brain cyst count, accompanied by remarkable levels of protective IFN-γ and antibodies, with amelioration of infection-induced oxidative stress and brain pathology. Ultimately, this experiment outlined the prospective role of a novel, natural, nano-encapsulated and mucosal vaccine adjuvant RA-SLNs as a propitious candidate against chronic toxoplasmosis.
Collapse
|
2
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
3
|
Matsuzaki C, Nakashima Y, Endo I, Tomabechi Y, Higashimura Y, Itonori S, Hosomi K, Kunisawa J, Yamamoto K, Hisa K. Enzymatically synthesized exopolysaccharide of a probiotic strain Leuconostoc mesenteroides NTM048 shows adjuvant activity to promote IgA antibody responses. Gut Microbes 2021; 13:1949097. [PMID: 34288820 PMCID: PMC8550178 DOI: 10.1080/19490976.2021.1949097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023] Open
Abstract
Leuconostoc mesenteroides strain NTM048 produces an exopolysaccharide (EPS; glucose polymers 94% and fructose polymers 6%) with adjuvanticity for mucosal vaccination. Strain NTM048 includes three putative EPS-synthesizing genes, gtf1 and gtf2 for synthesizing glucose polymers, and lvnS for synthesizing fructose polymer. To elucidate the key polymer structure for adjuvanticity, two genes, gtf1 and gtf2, which were annotated as glycoside hydrolase family 70 enzyme genes, were expressed in Escherichia coli. Glycosyl-linkage composition analysis and NMR analysis showed that the recombinant enzyme Gtf1 produced a soluble form of α-1,6-glucan, whereas the recombinant enzyme Gtf2 produced glucans with approximately equal percentages of α-1,6- and α-1,3-glucose residues both in the supernatant (S-glucan) and as a precipitate (P-glucan). Comparison of polysaccharides synthesized by Gtf1, Gtf2, and LvnS revealed that Gtf2-S-glucan, which was produced in the supernatant by Gtf2 and formed particles of 7.8 µm, possessed 1.8-fold higher ability to stimulate IgA production from murine Peyer's patch cells than native NTM048 EPS. Evaluation of adjuvanticity by intranasal administration of mice with an antigen (ovalbumin) and Gtf2-S-glucan or NTM048 EPS showed that Gtf2-S-glucan induced the production of higher antigen-specific antibodies in the airway mucosa and plasma, suggesting a pivotal role of Gtf2-S-glucan in the adjuvanticity of NTM048 EPS.
Collapse
Affiliation(s)
- Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, IshikawaJapan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Yukari Nakashima
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, IshikawaJapan
| | - Ikuto Endo
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Yusuke Tomabechi
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, IshikawaJapan
| | - Saki Itonori
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, ShigaJapan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama, Japan
| | - Keiko Hisa
- Management Office, Noster Inc, Kyoto, Japan
| |
Collapse
|
4
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
5
|
Trinh TA, Hoang TX, Kim JY. All-trans retinoic acid increases NF-κB activity in PMA-stimulated THP-1 cells upon unmethylated CpG challenge by enhancing cell surface TLR9 expression. Mol Cell Biochem 2020; 473:167-177. [PMID: 32638255 DOI: 10.1007/s11010-020-03817-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
An active metabolite of vitamin A, all-trans retinoic acid (ATRA), is known to exert immunomodulatory functions. This study investigates the possible immune potentiating effect of ATRA on NF-κB activity in human monocytic THP-1 cells after exposure to unmethylated CpG DNA ODN2006. We observed that challenge with ODN2006 significantly enhanced the NF-κB activity of PMA-differentiated THP-1 cells. ATRA synergistically enhanced NF-κB activity of cells, in a concentration- and time-dependent manner. The enhanced NF-κB activity of PMA-differentiated THP-1 cells after ODN2006 challenge was dependent on the RAR/RXR pathway. To determine the mechanism involved in increasing in the NF-κB activity of stimulated THP-1 cells, we examined the effects of PMA and ATRA on the expression of TLR9 (a receptor of ODN2006) in THP-1 cells. PMA treatment significantly enhanced both the intracellular and cell surface expression of TLR9, while ATRA alone showed no effect. However, ATRA synergistically enhanced the cell surface TLR9 expression of PMA-differentiated cells. To determine whether the ATRA-enhanced NF-κB activity is due to the enhanced cell surface TLR9 expression, we examined NF-κB activity after treatment with anti-TLR9 blocking antibody. Results revealed that the anti-TLR9 antibody treatment almost completely reverses the ATRA-enhanced NF-κB activity, suggesting that ATRA enhances NF-κB activity through upregulation of the cell surface TLR9 expression in PMA-differentiated and unmethylated CpG challenged THP-1 cells.
Collapse
Affiliation(s)
- Tam-Anh Trinh
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Kyeonggi-Do, 461-701, Korea.
| |
Collapse
|
6
|
Hypoxia inhibits TNF-α-induced TSLP expression in keratinocytes. PLoS One 2019; 14:e0224705. [PMID: 31682627 PMCID: PMC6827910 DOI: 10.1371/journal.pone.0224705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
The expression of thymic stromal lymphopoietin (TSLP), a cytokine which greatly contributes to the induction of type I allergy, is upregulated in chronic inflammation such as atopic dermatitis and psoriasis. As hypoxia in the epidermis is important for maintaining skin homeostasis, we examined the regulation of TSLP expression by hypoxic conditions in normal skin epithelial tissues. TNF-α-induced expression of TSLP in human keratinocyte HaCaT and in mouse keratinocyte PAM212 cell lines were inhibited under hypoxic condition (1% O2), although the mRNA expressions of TNF-α, IL-6, IL-8, MCP-1, and VEGF-A were not inhibited. Hypoxia-mimicking conditions, which include NiCl2, CoCl2, and DMOG, an inhibitor of 2-oxoglutarate-dependent enzymes, also selectively inhibited TNF-α-induced TSLP expression. These results suggested that inactivation of prolyl hydroxylase by hypoxia and hypoxia-mimicking conditions is involved in the repression of TNF-α-induced TSLP expression. Interestingly, the inhibition of TSLP production by hypoxic treatment was significantly reversed by treatment with the HIF-2α antagonist but not with the HIF-1α inhibitor. DMOG-induced inhibition of TSLP promoter activity was dependent on the -71 to +185 bp promoter region, suggesting that the binding of HIF-2 to hypoxia response element (HRE) in this region repressed the TSLP expression. These results indicated that hypoxia and hypoxia-mimicking conditions inhibited TSLP expression via HIF-2 and HRE-dependent mechanisms. Therefore, PHD and HIF-2α could be a new strategy for treatment of atopic dermatitis and psoriasis.
Collapse
|