1
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
2
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Gottumukkala RVSRK, Lv H, Cornivelli L, Wagers AJ, Kwong RY, Bronson R, Stewart GC, Schulze PC, Chutkow W, Wolpert HA, Lee RT, Lipes MA. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci Transl Med 2012; 4:138ra80. [PMID: 22700956 DOI: 10.1126/scitranslmed.3003551] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with type 1 diabetes (T1D) suffer excessive morbidity and mortality after myocardial infarction (MI) that is not fully explained by the metabolic effects of diabetes. Acute MI is known to trigger a profound innate inflammatory response with influx of mononuclear cells and production of proinflammatory cytokines that are crucial for cardiac repair. We hypothesized that these same pathways might exert "adjuvant effects" and induce pathological responses in autoimmune-prone T1D hosts. Here, we show that experimental MI in nonobese diabetic mice, but not in control C57BL/6 mice, results in a severe post-infarction autoimmune (PIA) syndrome characterized by destructive lymphocytic infiltrates in the myocardium, infarct expansion, sustained cardiac autoantibody production, and T helper type 1 effector cell responses against cardiac (α-)myosin. PIA was prevented by inducing tolerance to α-myosin, demonstrating that immune responses to cardiac myosin are essential for this disease process. Extending these findings to humans, we developed a panel of immunoassays for cardiac autoantibody detection and found autoantibody positivity in 83% post-MI T1D patients. We further identified shared cardiac myosin autoantibody signatures between post-MI T1D patients and nondiabetic patients with myocarditis, which were absent in post-MI type 2 diabetic patients, and confirmed the presence of myocarditis in T1D by cardiac magnetic resonance imaging techniques. These data provide experimental and clinical evidence for a distinct post-MI autoimmune syndrome in T1D. Our findings suggest that PIA may contribute to worsened post-MI outcomes in T1D and highlight a role for antigen-specific immunointervention to selectively block this pathway.
Collapse
|
4
|
Kornete M, Piccirillo CA. Critical co-stimulatory pathways in the stability of Foxp3+ Treg cell homeostasis in Type I diabetes. Autoimmun Rev 2011; 11:104-11. [PMID: 21875694 DOI: 10.1016/j.autrev.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Mechanisms of peripheral tolerance maintain a controlled balance between self-tolerance, protective immunity against a spectrum of non-self antigens, and suppressing pathology in various disorders. CD4(+) regulatory T cells (T(reg)) expressing the Foxp3 transcription factor dominantly control the activity and pathological consequences of a variety of effector T cell lineages in various inflammatory settings. This review will focus on recent advances on the roles of B7 family members in regulating Treg cell development, function and homeostasis during tolerance induction and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Mara Kornete
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
5
|
T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011; 2011:513210. [PMID: 21785617 PMCID: PMC3140193 DOI: 10.1155/2011/513210] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease driven by the activation of lymphocytes against pancreatic β-cells. Among β-cell autoantigens, preproinsulin has been ascribed a key role in the T1D process. The successive steps that control the activation of autoreactive lymphocytes have been extensively studied in animal models of T1D, but remains ill defined in man. In man, T lymphocytes, especially CD8+ T cells, are predominant within insulitis. Developing T-cell assays in diabetes autoimmunity is, thus, a major challenge. It is expected to help defining autoantigens and epitopes that drive the disease process, to pinpoint key functional features of epitope-specific T lymphocytes along the natural history of diabetes and to pave the way towards therapeutic strategies to induce immune tolerance to β-cells. New T-cell technologies will allow defining autoreactive T-cell differentiation programs and characterizing autoimmune responses in comparison with physiologically appropriate immune responses. This may prove instrumental in the discovery of immune correlates of efficacy in clinical trials.
Collapse
|
6
|
Lv H, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 2011; 121:1561-73. [PMID: 21436590 DOI: 10.1172/jci44583] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/19/2011] [Indexed: 01/25/2023] Open
Abstract
Autoimmunity has long been linked to myocarditis and its sequela, dilated cardiomyopathy, the leading causes of heart failure in young patients. However, the underlying mechanisms are poorly defined, with most clinical investigations focused on humoral autoimmunity as the target for intervention. Here, we show that the α-isoform of myosin heavy chain (α-MyHC, which is encoded by the gene Myh6) is the pathogenic autoantigen for CD4+ T cells in a spontaneous mouse model of myocarditis. Further, we found that Myh6 transcripts were absent in mouse medullary thymic epithelial cells (mTECs) and peripheral lymphoid stromal cells, which have been implicated in mediating central and peripheral T cell tolerance, respectively. Transgenic expression of α-MyHC in thymic epithelium conferred tolerance to cardiac myosin and prevented myocarditis, demonstrating that α-MyHC is a primary autoantigen in this disease process. Remarkably, we found that humans also lacked α-MyHC in mTECs and had high frequencies of α-MyHC-specific T cells in peripheral blood, with markedly augmented T cell responses to α-MyHC in patients with myocarditis. Since α-MyHC constitutes a small fraction of MyHC in human heart, these findings challenge the longstanding notion that autoimmune targeting of MyHC is due to its cardiac abundance and instead suggest that it is targeted as a result of impaired T cell tolerance mechanisms. These results thus support a role for T cell-specific therapies for myocarditis.
Collapse
Affiliation(s)
- Huijuan Lv
- Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Paolo Fiorina
- The Transplantation Research Center, Nephrology Division, Children's Hospital of Boston, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Rajagopalan G, Mangalam AK, Sen MM, Cheng S, Kudva YC, David CS. Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans. Autoimmunity 2009; 40:169-79. [PMID: 17453715 DOI: 10.1080/08916930701201083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease with a strong HLA association particularly, HLA-DQ8. We investigated whether islet-specific expression of granulocyte/macrophage colony-stimulating factor (Ins.GM-CSF) in A Beta degrees.NOD.DQ8 mice (HLA-DQ8 transgenic mice on a NOD background lacking endogenous mouse MHC class II molecules) would predispose to development of spontaneous autoimmune diabetes. A Beta degrees.NOD.DQ8 mice expressing GM-CSF in the pancreatic ss cells (8+ G+) as well as litter mates lacking either HLA-DQ8 (8 - G+) or GM-CSF (8+ G -) or both (8 - G -) exhibited insulitis and sialadenitis of varying degrees. But none of the mice progressed to develop T1D. Other than the marked mononuclear cell infiltration in livers of mice expressing GM-CSF irrespective of HLA-DQ8 expression (8+ G+ or 8 - G+), no other changes were observed in the animals. Thus, we have shown for the first time that expression of HLA-DQ8 in the diabetes-predisposing mileu of NOD genetic background is not sufficient to predispose to development of autoimmune diabetes even when the potent immunostimulatory cytokine, GM-CSF is expressed in the pancreatic islets.
Collapse
|
9
|
CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 2008; 26:4062-72. [PMID: 18562053 DOI: 10.1016/j.vaccine.2008.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal costimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor alpha chain (IL-7Ralpha, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor-alpha (TNF-alpha) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity.
Collapse
|
10
|
Rajagopalan G, Mangalam AK, Sen MM, Kudva YC, David CS. Distinct local immunogenic stimuli dictate differential requirements for CD4+ and CD8+ T cell subsets in the pathogenesis of spontaneous autoimmune diabetes. Autoimmunity 2008; 40:489-96. [PMID: 17966038 DOI: 10.1080/08916930701649836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The strong MHC class II association in human as well as murine Type 1 diabetes (T1D) suggests a central role for CD4+T cells in the disease pathogenesis. Nonetheless, CD8+T cells also play a role in the pathogenic process. We describe how CD4+ or CD8+T cells can contribute differentially to the pathogenesis of T1D using the HLA-DQ8 transgenic mouse models. HLA-DQ8 transgenic mice expressing the costimulatory molecule, B7.1 (RIP.B7.1), or the proinflammatory cytokine, TNF-alpha (RIP.TNF) or both (RIP.B7.RIP.TNF) under the control of rat insulin promoter (RIP) were used. Our observations indicate that in the RIP-B7 model, CD4+T cells were absolutely required for diabetes to occur. However, when CD8+ T cells were also present, the incidence of diabetes increased. On the other hand, in the RIP-TNF model, CD8+T cells were absolutely required for diabetes to occur. Interestingly, when CD4+T cells were also present, the incidence of diabetes decreased. In the RIP-B7.RIP-TNF double transgenic mouse model, either CD4+ or CD8+T cells were sufficient to precipitate diabetes in 100% of the animals. Thus, the relative roles of CD4+ or CD8+T cells in the pathogenesis of T1D are possibly determined by the local inflammatory stimuli.
Collapse
|
11
|
Kaufman HL, Cohen S, Cheung K, DeRaffele G, Mitcham J, Moroziewicz D, Schlom J, Hesdorffer C. Local Delivery of Vaccinia Virus Expressing Multiple Costimulatory Molecules for the Treatment of Established Tumors. Hum Gene Ther 2006; 17:239-44. [PMID: 16454657 DOI: 10.1089/hum.2006.17.239] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Successful immunotherapy of established tumors depends on overcoming the suppressive influence of the local tumor microenvironment. The direct injection of vaccinia virus expressing the B7.1 (CD80) costimulatory molecule into melanoma lesions resulted in local and systemic immunity with associated clinical responses. Therefore, we sought to evaluate the effects of a vaccinia virus expressing three costimulatory molecules, B7.1, ICAM-1, and LFA-3 (rV-TRICOM), in patients with metastatic melanoma. A standard dose escalation phase I clinical trial was performed. Thirteen patients were enrolled and 12 were available for follow-up. Local vaccination was feasible, with only low-grade injection site reactions associated with mild fatigue and myalgia reported. There was one occurrence of grade 1 vitiligo. Overall there was a 30.7% objective clinical response, with one patient achieving a complete response for more than 22 months. An inverse association was detected between anti-vaccinia antibody and anti-vaccinia T cell responses. Patients who failed to respond to vaccination but received high-dose interleukin-2 had a trend toward improved survival. Collectively, these results confirm the safety profile and feasibility of direct injection of vaccinia virus expressing multiple costimulatory molecules in patients with established tumors. Further clinical investigation is needed to better define the role of antigen, adjuvant cytokines, costimulation, and cross-presentation in the host immune response to local vaccination with vaccinia viruses expressing immunomodulatory molecules.
Collapse
Affiliation(s)
- Howard L Kaufman
- Tumor Immunology Laboratory, Department of Surgery, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ueno A, Cho S, Cheng L, Wang Z, Wang B, Yang Y. Diabetes Resistance/Susceptibility in T Cells of Nonobese Diabetic Mice Conferred by MHC and MHC-Linked Genes. THE JOURNAL OF IMMUNOLOGY 2005; 175:5240-7. [PMID: 16210629 DOI: 10.4049/jimmunol.175.8.5240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphism of MHC and MHC-linked genes is tightly associated with susceptibility to type 1 diabetes (T1D) in human and animal models. Despite the extensive studies, however, the role of MHC and MHC-linked genes expressed by T cells on T1D susceptibility remains unclear. Because T cells develop from TCR(-) thymic precursor (pre-T) cells that undergo MHC restriction mediated by thymic stroma cells, we reconstituted the T cell compartment of NOD.scid-RIP-B7.1 mice using pre-T cells isolated from NOD, NOR, AKR, and C57BL/6 (B6) mice. T1D developed rapidly in the mice reconstituted with pre-T cells derived from NOD or NOR donors. In contrast, most of the NOD.scid-RIP-B7.1 mice reconstituted with pre-T cells from AKR or B6 donors were free of T1D. Further analysis revealed that genes within MHC locus of AKR or B6 origin reduced incidence of T1D in the reconstituted NOD.scid-RIP-B7.1 mice. The expression of MHC class I genes of k, but not b haplotype, in T cells conferred T1D resistance. Replacement of an interval near the distal end of the D region in T cells of B6 origin with an identical allele of 129.S6 origin resulted in T1D development in the reconstituted mice. These results provide evidence that the expression of MHC class I and MHC-linked genes in T cells of NOD mice indeed contributes to T1D susceptibility, while expression of specific resistance alleles of MHC or MHC-linked genes in T cells alone would effectively reduce or even prevent T1D.
Collapse
Affiliation(s)
- Aito Ueno
- Julia McFarlane Diabetes Research Centre, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Wong FS, Du W, Thomas IJ, Wen L. The influence of the major histocompatibility complex on development of autoimmune diabetes in RIP-B7.1 mice. Diabetes 2005; 54:2032-40. [PMID: 15983204 DOI: 10.2337/diabetes.54.7.2032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The most important genetic susceptibility factor for type 1 diabetes is encoded in the major histocompatibility complex (MHC). The nonobese diabetic (NOD) mouse, which develops spontaneous diabetes, expresses H-2g7 comprising the MHC class I molecules Kd and Db and the MHC class II molecule I-Ag7. However, neither B6.H-2g7 mice, in which H-2g7 is expressed on the C57BL/6 genetic background, nor the nonobese resistant (NOR) mouse, in which H-2g7 is expressed on a genetic background that is 88% similar to NOD mice, develop diabetes. Immune tolerance can be broken in these diabetes-resistant mice expressing H-2g7 if the costimulatory molecule B7.1 is present on the islet beta cells. This does not occur if only single MHC class I components of the H-2g7 haplotype are present, such as Kd in BALB/c mice or Db in C57BL/6 mice, both of which develop only a low level of diabetes when B7.1 is expressed. The presence of I-Ag7 leads to the development of an autoimmune T-cell repertoire, and local costimulation of CD8 T-cells precipitates aggressive diabetes. This implies that a major role of the MHC class II molecules in diabetes is the development of an autoreactive T-cell repertoire.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Pathology and Microbiology, Section of Endocrinology, Yale School of Medicine, 333 Cedar St., Mail Box 208020, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
14
|
Boehm BO, Bluestone JA. Differential roles of costimulatory signaling pathways in type 1 diabetes mellitus. Rev Diabet Stud 2005; 1:156-64. [PMID: 17491700 PMCID: PMC1783691 DOI: 10.1900/rds.2004.1.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Bernhard O. Boehm
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Ulm, Germany
- Address correspondence to: Bernhard O. Boehm, e-mail:
| | - Jeffrey A. Bluestone
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|