1
|
Sun Z, Du M, Lu Y, Zeng CQ. Effects of triptolide on the expression of MHC II in microglia in kainic acid‑induced epilepsy. Mol Med Rep 2018; 17:8357-8362. [PMID: 29693706 DOI: 10.3892/mmr.2018.8891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study was to determine whether triptolide (T10) had any effect on major histocompatibility complex class II (MHC II) expression in kainic acid (KA)‑activated microglia, and to investigate the underlying molecular mechanism. BV‑2 microglia were pretreated with T10 prior to activation with KA. The expression level of MHC II and class II transactivator (CIITA) mRNA was determined via reverse transcription‑polymerase chain reaction. The expression of MHC II, CIITA and the phosphorylation level of c‑Jun and proto‑oncogene c‑Fos (c‑Fos) was determined by western blotting. The protein expression level of MHC II was determined by immunocytochemistry. It was observed that the mRNA and protein levels of MHC II and CIITA were increased in KA‑activated BV‑2 microglia, and that this increase was almost completely eliminated by T10. AP‑1 is a family of homodimers or heterodimers, composed of Jun family and Fos family proteins. Sequence analysis revealed an AP‑1 DNA binding site in the promoter of CIITA. The phosphorylation of c‑Jun and c‑Fos was increased in KA‑activated microglia, while T10 was able to suppress the phosphorylation of c‑Jun and c‑Fos in KA‑activated microglia. These data suggested that T10 may exert suppressive effects on MHC II expression in KA‑activated microglia, and that the mechanism may involve the regulation of AP‑1 activity.
Collapse
Affiliation(s)
- Zheng Sun
- Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Meng Du
- Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yao Lu
- Neonatal Screening Center, Maternal and Child Health Care Hospital of Dalian, Dalian, Liaoning 116033, P.R. China
| | - Chang-Qian Zeng
- Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
2
|
Strandberg LS, Ambrosi A, Jagodic M, Dzikaite V, Janson P, Khademi M, Salomonsson S, Ottosson L, Klauninger R, Adén U, Sonesson SE, Sunnerhagen M, de Graaf KL, Kuchroo VK, Achour A, Winqvist O, Olsson T, Wahren-Herlenius M. Maternal MHC regulates generation of pathogenic antibodies and fetal MHC-encoded genes determine susceptibility in congenital heart block. THE JOURNAL OF IMMUNOLOGY 2010; 185:3574-82. [PMID: 20696861 DOI: 10.4049/jimmunol.1001396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Congenital heart block develops in fetuses of anti-Ro52 Ab-positive women. A recurrence rate of 20%, despite the persistence of maternal autoantibodies, indicates that there are additional, yet unidentified, factors critical for development of congenital heart block. In this study, we demonstrate that besides the maternal MHC controlling Ab specificity, fetal MHC-encoded genes influence fetal susceptibility to congenital heart block. Using MHC congenic rat strains, we show that heart block develops in rat pups of three strains carrying MHC haplotype RT1(av1) (DA, PVG.AV1, and LEW.AV1) after maternal Ro52 immunization, but not in LEW rats (RT1(l)). Different anti-Ro52 Ab fine specificities were generated in RT1(av1) versus RT1(l) animals. Maternal and fetal influence was determined in an F(2) cross between LEW.AV1 and LEW strains, which revealed higher susceptibility in RT1(l) than RT1(av1) pups once pathogenic Ro52 Abs were present. This was further confirmed in that RT1(l) pups more frequently developed heart block than RT1(av1) pups after passive transfer of RT1(av1) anti-Ro52 sera. Our findings show that generation of pathogenic Ro52 Abs is restricted by maternal MHC, whereas the fetal MHC locus regulates susceptibility and determines the fetal disease outcome in anti-Ro52-positive pregnancies.
Collapse
Affiliation(s)
- Linn S Strandberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
de Graaf KL, Barth S, Herrmann MM, Storch MK, Wiesmüller KH, Weissert R. Characterization of the encephalitogenic immune response in a model of multiple sclerosis. Eur J Immunol 2008; 38:299-308. [PMID: 18050272 DOI: 10.1002/eji.200737475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be actively induced with the extracellular domain of myelin oligodendrocyte glycoprotein (MOG 1-125). MOG-EAE closely mimics multiple sclerosis (MS) especially as far as demyelination, lesion formation and axonal pathology are concerned. MOG 91-108 is the encephalitogenic stretch within MOG 1-125 in two EAE-susceptible MHC congenic LEW rat strains [LEW.1AV1 (RT1(av1)) and LEW.1N (RT1(n))] and DA (RT1(av1)) rats. In LEW.1AV1 rats, disease could be induced with MOG 96-104 and to a lesser extent with MOG 98-106, whereas in LEW.1N rats, only MOG 98-106 was pathogenic. Both peptides bound well to their restricting MHC class II molecules, i.e., RT1.D(n) in the LEW.1N rat and RT1.B(a) in the LEW.1AV1 rat. TCR spectratyping of MOG 91-108 immunized LEW.1N, LEW.1AV1 and DA rats revealed that MHC class II determined the TCRBV preference of CNS infiltrating T cells. The data demonstrate that the most critical factor in inducing MS like pathology is presentation of autoantigenic peptides on MHC class II molecules resulting in demyelination and axonal pathology.
Collapse
Affiliation(s)
- Katrien L de Graaf
- Experimental Neuroimmunology Laboratory, Hertie Institute for Clinical Brain Research, Department of General Neurology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)α/βII. J Biol Chem 2007; 282:15208-16. [PMID: 17395590 DOI: 10.1074/jbc.m611907200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental allergic encephalomyelitis, an autoimmune disorder mediated by T cells, results in demyelination, inflammation, and axonal loss in the central nervous system (CNS). Microglia play a critical role in major histocompatibility complex class II (MHC II)-dependent antigen presentation and in reactivation of CNS-infiltrated encephalitogenic T cells. Minocycline, a tetracycline anti-biotic, has profound anti-inflammatory properties and is experimentally used for treatment of many CNS disorders; however, the mechanisms involved in minocycline effects remain unknown. We show that administration of minocycline for 2 weeks ameliorated clinical severity of experimental allergic encephalomyelitis, an effect that partially involves the down-regulation of MHC II proteins in the spinal cord. Therefore, we sought to elucidate the molecular mechanisms of minocycline inhibitory effects on MHC II expression in microglia. Although complex, the co-activator class II transactivator (CIITA) is a key regulator of MHC II expression. Here we show that minocycline inhibited interferongamma (IFNgamma)-induced CIITA and MHC II mRNA. Interestingly, however, it was without effect on STAT1 phosphorylation or IRF-1 expression, transcription factors that are activated by IFNgamma and necessary for CIITA expression. Further experiments revealed that MHC II expression is down-regulated in the presence of the PKC(alpha) inhibitor Gö6976. Minocycline inhibited IFNgamma-induced PKC(alpha/betaII) phosphorylation and the nuclear translocation of both PKC(alpha/betaII) and IRF-1 that subsequently inhibits CIITA expression. Our present data delineate a molecular pathway of minocycline action that includes inhibitory effects on PKC(alpha/betaII) and transcription factors that regulate the expression of critical inflammatory genes such as MHC II. Such a fundamental mechanism may underlie the pleiotropic effects of minocycline in CNS inflammatory disorders.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
6
|
Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med 2006; 4:37. [PMID: 16925820 PMCID: PMC1590053 DOI: 10.1186/1479-5876-4-37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022] Open
Abstract
Background A number of autoimmune diseases have been clinically and pathologically characterized. In contrast, target antigens have been identified only in a few cases and, in these few cases, the knowledge of the exact epitopic antigenic sequence is still lacking. Thus the major objective of current work in the autoimmunity field is the identification of the epitopic sequences that are related to autoimmune reactions. Our labs propose that autoantigen peptide epitopes able to evoke humoral (auto)immune response are defined by the sequence similarity to the host proteome. The underlying scientific rationale is that antigen peptides acquire immunoreactivity in the context of their proteomic similarity level. Sequences uniquely owned by a protein will have high potential to evoke an immune reaction, whereas motifs with high proteomic redundancy should be immunogenically silenced by the tolerance phenomenon. The relationship between sequence redundancy and peptide immunoreactivity has been successfully validated in a number of experimental models. Here the hypothesis has been applied to pemphigus diseases and the corresponding desmoglein autoantigens. Methods Desmoglein 3 sequence similarity analysis to the human proteome followed by dot-blot/NMR immunoassays were carried out to identify and validate possible epitopic sequences. Results Computational analysis led to identifying a linear immunodominant desmoglein-3 epitope highly reactive with the sera from Pemphigus vulgaris as well as Pemphigus foliaceous. The epitopic peptide corresponded to the amino acid REWVKFAKPCRE sequence, was located in the extreme N-terminal region (residues 49 to 60), and had low redundancy to the human proteome. Sequence alignment showed that human desmoglein 1 and 3 share the REW-KFAK–RE sequence as a common motif with 75% residue identity. Conclusion This study 1) validates sequence redundancy to autoproteome as a main factor in shaping desmoglein peptide immunogenicity; 2) offers a molecular mechanicistic basis in analyzing the commonality of autoimmune responses exhibited by the two forms of pemphigus; 3) indicates possible peptide-immunotherapeutical approaches for pemphigus diseases.
Collapse
Affiliation(s)
| | | | | | - Rosario Serpico
- Institute of Clinical Odontostomatology, 2University of Naples, Italy
| | - Animesh A Sinha
- Division of Dermatology and Cutaneous Sciences, Center for Investigative Dermatology, Michigan State University, East Lansing, MI, USA
| | - Darja Kanduc
- Dept. of Biochemistry and Molecular Biology, University of Bari, Italy
| |
Collapse
|
7
|
Herrmann MM, Gaertner S, Stadelmann C, van den Brandt J, Böscke R, Budach W, Reichardt HM, Weissert R. Tolerance induction by bone marrow transplantation in a multiple sclerosis model. Blood 2005; 106:1875-83. [PMID: 15899918 DOI: 10.1182/blood-2004-12-4607] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) in rats is a highly valuable model of multiple sclerosis (MS) because it mimics major hallmarks of the human disease. EAE induced with myelin-oligodendrocyte-glycoprotein (MOG) in DA rats is relapsing/remitting, and lesions in the central nervous system show inflammation, demyelination, and axonal and neuronal loss. Recently, bone marrow transplantation (BMT) was introduced as a novel strategy to treat MS, but its efficiency and the underlying mechanism are debatable. In MOG-induced EAE we found that BMT at the peak of EAE but not in the chronic phase leads to disease attenuation. In both settings, rats receiving bone marrow (BM) transplants were protected from subsequently induced relapses. These findings could be confirmed by histopathology in which rats receiving BM transplants did not have lesions compared with controls not receiving transplants. Importantly, the protective effect was achieved by allogeneic, syngeneic, and BM grafts from diseased rats. BMT resulted in increased numbers of CD4(+)CD25(bright) regulatory T cells, increased Foxp3 expression, a shift in T-cell epitope recognition, and a strong reduction of autoantibodies even after rechallenge with MOG. Thus, our results indicate potential mechanisms of how BMT may contribute to the improvement of MS and provide a rationale for its application in patients suffering from various autoimmune diseases.
Collapse
Affiliation(s)
- Martin M Herrmann
- Hertie Institute for Clinical Brain Research, Department of General Neurology, Experimental Neuroimmunology Laboratory, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Duyar H, Dengjel J, de Graaf KL, Wiesmüller KH, Stevanović S, Weissert R. Peptide motif for the rat MHC class II molecule RT1.Da: similarities to the multiple sclerosis-associated HLA-DRB1*1501 molecule. Immunogenetics 2005; 57:69-76. [PMID: 15711804 DOI: 10.1007/s00251-004-0761-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/25/2004] [Indexed: 10/25/2022]
Abstract
Experimental autoimmune encephalomyelitis induced with myelin proteins in DA and LEW.1AV1 rats is a model of multiple sclerosis (MS). It reproduces major aspects of this detrimental disease of the central nervous system. MS is associated with the HLA-DRB1*1501, DRB5*0101, and DQB1*0602 haplotype. DA and LEW.1AV1 rats share the RT1av1 haplotype. So far, no MHC class II peptide motif of RT1.Da molecules has been described. Sequence alignment of the beta chain of the rat MHC class II molecule RT1.Da with human HLA class II molecules revealed strong similarity in the peptide-binding groove of RT1.Da and HLA-DRB1*1501. According to the putative peptide-binding pockets of RT1.Da, after comparison with the pockets of HLA-DRB1*1501, we predicted the peptide motif of RT1.Da. To verify the predicted motif, naturally processed peptides were eluted by acidic treatment from immunoaffinity-purified RT1.Da molecules of lymphoid tissue of DA rats and subsequently analyzed by ESI tandem mass spectrometry. In addition, we performed binding studies with combinatorial nonapeptide libraries to purified RT1.Da molecules. Based on these studies we could define a peptide-binding motif for RT1.Da characterized by aliphatic amino acid residues (L, I, V, M) and of F for the peptide pocket P1, aromatic residues (F, Y, W) for P4, basic residues (K, R) for P6, aliphatic residues (I, L, V) for P7, and aromatic residues (F, Y, W) and L for P9. Both methods revealed similar binding characteristics for peptides to RT1.Da. This data will allow epitope predictions for analysis of peptides, relevant for experimental autoimmune diseases.
Collapse
Affiliation(s)
- Hüseyin Duyar
- Experimental Neuroimmunology Laboratory, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|