1
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
2
|
Doorduijn EM, Sluijter M, Querido BJ, Seidel UJE, Oliveira CC, van der Burg SH, van Hall T. T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1 b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Front Immunol 2018; 9:60. [PMID: 29422902 PMCID: PMC5788890 DOI: 10.3389/fimmu.2018.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The HLA-E homolog in the mouse (Qa-1b) is a conserved MHC class Ib molecule presenting monomorphic peptides to germline-encoded natural killer receptor CD94/NKG2A. Previously, we demonstrated the replacement of this canonical peptide by a diverse peptidome upon deficiency of the TAP peptide transporter. Analysis of this Qa-1b-restricted T cell repertoire against these non-mutated neoantigens revealed characteristics of conventional hypervariable CD8+ T cells, but also of invariant T cell receptor (TCR)αβ T cells. A shared TCR Vα chain was used by this subset in combination with a variety of Vβ chains. The TCRs target peptide ligands that are conserved between mouse and man, like the identified peptide derived from the transcriptional cofactor Med15. The thymus selection was studied in a TCR-transgenic mouse and emerging naïve CD8+ T cells displayed a slightly activated phenotype, as witnessed by higher CD122 and Ly6C expression. Moreover, the Qa-1b protein was dispensable for thymus selection. Importantly, no self-reactivity was observed as reported for other MHC class Ib-restricted subsets. Naïve Qa-1b restricted T cells expanded, contracted, and formed memory cells in vivo upon peptide vaccination in a similar manner as conventional CD8+ T cells. Based on these data, the Qa-1b restricted T cell subset might be positioned closest to conventional CD8+ T cells of all MHC class Ib populations.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bianca J Querido
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ursula J E Seidel
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Claudia C Oliveira
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
3
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
4
|
Jay DC, Reed-Loisel LM, Jensen PE. Polyclonal MHC Ib-restricted CD8+ T cells undergo homeostatic expansion in the absence of conventional MHC-restricted T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:2805-14. [PMID: 18292501 DOI: 10.4049/jimmunol.180.5.2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Naive T cells have the capacity to expand in a lymphopenic environment in a process called homeostatic expansion, where they gain a memory-like phenotype. Homeostatic expansion is dependent on competition for a number of factors, including growth factors and interactions with their selecting self-MHC molecules. In contrast to conventional T cells, it is unclear whether class Ib-restricted CD8+ T cells have a capacity to undergo homeostatic expansion. In this study, we demonstrate that polyclonal MHC Ib-restricted CD8+ T cells can undergo homeostatic expansion and that their peripheral expansion is suppressed by conventional MHC-restricted T cells. The acute depletion of CD4+ T cells in MHC class Ia-deficient Kb-/-Db-/- mice led to the substantial expansion of class Ib-restricted CD8+ T cells. Adoptive transfer of class Ib-restricted CD8+ T cells to congenic lymphopenic recipients revealed their ability to undergo homeostatic expansion in a MHC Ib-dependent manner. To further study the homeostatic expansion of MHC Ib-restricted T cells in the absence of all conventional MHC-restricted T cells, we generated mice that express only MHC Ib molecules by crossing H-2Kb-/-Db-/- with CIITA-/- mice. CD8+ T cells in these mice exhibit all of the hallmarks of naive T cells actively undergoing homeostatic expansion with constitutive memory-like surface and functional phenotype. These findings provide direct evidence that MHC Ib-restricted CD8+ T cells have the capacity to undergo homeostatic expansion. Their peripheral expansion is suppressed under normal conditions by a numerical excess of conventional MHC class Ia- and class II-restricted T cells.
Collapse
Affiliation(s)
- David C Jay
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
5
|
Chiang EY, Stroynowski I. The role of structurally conserved class I MHC in tumor rejection: contribution of the Q8 locus. THE JOURNAL OF IMMUNOLOGY 2006; 177:2123-30. [PMID: 16887971 DOI: 10.4049/jimmunol.177.4.2123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse multimember family of Qa-2 oligomorphic class I MHC genes is continuously undergoing duplications and deletions that alter the number of the two "prototype" Qa-2 sequences, Q8 and Q9. The frequent recombination events within the Q region lead to strain-specific modulation of the cumulative Qa-2 expression levels. Q9 protects C57BL/6 hosts from multiple disparate tumors and functions as a major CTL restriction element for shared tumor-associated Ags. We have now analyzed functional and structural properties of Q8, a class I MHC that differs significantly from Q9 in the peptide-binding, CTL-interacting alpha(1) and alpha(2) regions. Unexpectedly, we find that the extracellular domains of Q8 and Q9 act similarly during primary and secondary rejection of tumors, are recognized by cross-reactive antitumor CTL, have overlapping peptide-binding motifs, and are both assembled via the transporter associated with the Ag processing pathway. These findings suggest that shared Ag-presenting functions of the "odd" and "even" Qa-2 loci may contribute to the selective pressures shaping the haplotype-dependent quantitative variation of Qa-2 protein expression.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Center for Immunology, Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | |
Collapse
|
6
|
Sullivan LC, Hoare HL, McCluskey J, Rossjohn J, Brooks AG. A structural perspective on MHC class Ib molecules in adaptive immunity. Trends Immunol 2006; 27:413-20. [PMID: 16860610 DOI: 10.1016/j.it.2006.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/26/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
The highly polymorphic MHC class Ia molecules have a central role in adaptive immunity. By contrast, the closely related MHC class Ib molecules, which show limited polymorphism, are best known for regulating innate immune responses. Nevertheless, a recent area of interest is the emerging role of class Ib molecules in adaptive immunity, particularly in response to tumours and pathogens such as Mycobacteria, Listeria and Salmonella. Here, we review recent findings in this area, highlighting the structure of a T-cell receptor complexed with a cytomegalovirus peptide bound to the class Ib molecule, HLA-E. Collectively, these findings have implications for immunity, transplantation and autoimmunity, and our understanding of the evolution and plasticity of the molecular interactions mediating adaptive immunity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|