1
|
Korenfeld D, Roussak K, Dinkel S, Vogel TP, Pollack H, Levy J, Leiding JW, Milner J, Cooper M, Klechevsky E. STAT3 Gain-of-Function Mutations Underlie Deficiency in Human Nonclassical CD16 + Monocytes and CD141 + Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:2423-2432. [PMID: 34654687 DOI: 10.4049/jimmunol.2000841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Genetic analysis of human inborn errors of immunity has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. The STAT family of transcription factors orchestrate hematopoietic cell differentiation. Patients with de novo activating mutations of STAT3 present with multiorgan autoimmunity, lymphoproliferation, and recurrent infections. We conducted a detailed characterization of the blood monocyte and dendritic cell (DC) subsets in patients with gain-of-function (GOF) mutations across the gene. We found a selective deficiency in circulating nonclassical CD16+ and intermediate CD16+CD14+ monocytes and a significant increase in the percentage of classical CD14+ monocytes. This suggests a role for STAT3 in the transition of classical CD14+ monocytes into the CD16+ nonclassical subset. Developmentally, ex vivo-isolated STAT3GOF CD14+ monocytes fail to differentiate into CD1a+ monocyte-derived DCs. Moreover, patients with STAT3GOF mutations display reduced circulating CD34+ hematopoietic progenitors and frequency of myeloid DCs. Specifically, we observed a reduction in the CD141+ DC population, with no difference in the frequencies of CD1c+ and plasmacytoid DCs. CD34+ hematopoietic progenitor cells from patients were found to differentiate into CD1c+ DCs, but failed to differentiate into CD141+ DCs indicating an intrinsic role for STAT3 in this process. STAT3GOF-differentiated DCs produced lower amounts of CCL22 than healthy DCs, which could further explain some of the patient pathological phenotypes. Thus, our findings provide evidence that, in humans, STAT3 serves to regulate development and differentiation of nonclassical CD16+ monocytes and a subset of myeloid DCs.
Collapse
Affiliation(s)
- Daniel Korenfeld
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO
| | - Kate Roussak
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO
| | - Sabrina Dinkel
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO
| | - Tiphanie P Vogel
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO
| | - Henry Pollack
- Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Joseph Levy
- Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Jennifer W Leiding
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida, Tampa, FL; and
| | - Joshua Milner
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Megan Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
2
|
Yoo HJ, Kim NY, Kim JH. Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System. Mol Cells 2021; 44:310-317. [PMID: 33980746 PMCID: PMC8175153 DOI: 10.14348/molcells.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Na Young Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Chen Z, Gupta T, Xu P, Phan S, Pickar A, Yau W, Karls RK, Quinn FD, Sakamoto K, He B. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice. Vaccine 2015; 33:7217-7224. [PMID: 26552000 DOI: 10.1016/j.vaccine.2015.10.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/24/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development.
Collapse
Affiliation(s)
- Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Tuhina Gupta
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Adrian Pickar
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Wilson Yau
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Frederick D Quinn
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
4
|
Bazzi S, Modjtahedi H, Mudan S, Akle C, Bahr GM. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology 2015; 220:1293-304. [PMID: 26253276 DOI: 10.1016/j.imbio.2015.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
The significant role played by mycobacteria in modulating immune responses through enhancing the crosstalk between innate and adaptive immunity has been highlighted in several studies. Owing to their unique antigenic profile, heat killed (HK) preparations of rapid-growing mycobacteria, currently undergoing clinical development, have been assessed as adjuvant therapy in various diseases. The purpose of this study is to investigate the regulation of leukocyte surface receptors, in whole blood from healthy donors, following in vitro stimulation with HK Mycobacterium vaccae (M. vaccae) or M. obuense. We have demonstrated the ability of both mycobacterial preparations to target monocytes and neutrophils and to regulate the surface expression of selected adhesion receptors, antigen-presenting and costimulatory receptors, pattern recognition receptors, complement and Fc receptors, as well as cytokine/chemokine receptors. Toll-like receptors (TLRs) 1 and 2 were also shown to be involved in mediating the M. obuense-induced upregulation of selected surface receptors on monocytes. Whole blood stimulation with M. vaccae or M. obuense resulted in a significant increase in the secretion of a specific set of cytokines and chemokines. Both mycobacterial preparations induced strong antigen-specific proliferative responses in peripheral blood mononuclear cells. Collectively, our data shows that M. vaccae and M. obuense have the potential to act as potent immunomodulators. Future research based on these findings may reveal novel immune pathways induced by these preparations with potential implication for their use in diverse immunotherapeutic approaches.
Collapse
Affiliation(s)
- Samer Bazzi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom; Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| | - Helmout Modjtahedi
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey KT1 2EE, United Kingdom.
| | - Satvinder Mudan
- Division of Clinical Sciences, St George's, University of London, London SW170RE, United Kingdom; Department of Academic Surgery, Royal Marsden Hospital, London SW3 6JJ, United Kingdom.
| | - Charles Akle
- The London Clinic, London W1G 6JA, United Kingdom.
| | - Georges M Bahr
- Faculty of Medicine and Medical Sciences, University of Balamand, 33 Amioun, Al Kurah, Lebanon.
| |
Collapse
|
5
|
Chung AW, Sieling PA, Schenk M, Teles RMB, Krutzik SR, Hsu DK, Liu FT, Sarno EN, Rea TH, Stenger S, Modlin RL, Lee DJ. Galectin-3 regulates the innate immune response of human monocytes. J Infect Dis 2012; 207:947-56. [PMID: 23255567 DOI: 10.1093/infdis/jis920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 is a β-galactoside-binding lectin widely expressed on epithelial and hematopoietic cells, and its expression is frequently associated with a poor prognosis in cancer. Because it has not been well-studied in human infectious disease, we examined galectin-3 expression in mycobacterial infection by studying leprosy, an intracellular infection caused by Mycobacterium leprae. Galectin-3 was highly expressed on macrophages in lesions of patients with the clinically progressive lepromatous form of leprosy; in contrast, galectin-3 was almost undetectable in self-limited tuberculoid lesions. We investigated the potential function of galectin-3 in cell-mediated immunity using peripheral blood monocytes. Galectin-3 enhanced monocyte interleukin 10 production to a TLR2/1 ligand, whereas interleukin 12p40 secretion was unaffected. Furthermore, galectin-3 diminished monocyte to dendritic cell differentiation and T-cell antigen presentation. These data demonstrate an association of galectin-3 with unfavorable host response in leprosy and a potential mechanism for impaired host defense in humans.
Collapse
Affiliation(s)
- Andrew W Chung
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Carvalho KI, Bruno FR, Snyder-Cappione JE, Maeda SM, Tomimori J, Xavier MB, Haslett PA, Nixon DF, Kallas EG. Lower numbers of natural killer T cells in HIV-1 and Mycobacterium leprae co-infected patients. Immunology 2012; 136:96-102. [PMID: 22269018 PMCID: PMC3372761 DOI: 10.1111/j.1365-2567.2012.03563.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 11/26/2022] Open
Abstract
Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M. leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.007-0.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.032-0.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.030-0.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-γ after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M. leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.
Collapse
Affiliation(s)
- Karina I Carvalho
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Torrelles JB, Sieling PA, Arcos J, Knaup R, Bartling C, Rajaram MVS, Stenger S, Modlin RL, Schlesinger LS. Structural differences in lipomannans from pathogenic and nonpathogenic mycobacteria that impact CD1b-restricted T cell responses. J Biol Chem 2011; 286:35438-35446. [PMID: 21859718 DOI: 10.1074/jbc.m111.232587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannosylated molecules on the Mycobacterium tuberculosis surface are important determinants in the immunopathogenesis of tuberculosis. To date, much attention has been paid to mannose-capped lipoarabinomannan, which mediates phagocytosis and intracellular trafficking of M. tuberculosis by engaging the macrophage mannose receptor and subsequently binds to intracellular CD1b molecules for presentation to T cells. Another important mannosylated lipoglycan on the M. tuberculosis surface is lipomannan (LM). Comparative structural detail of the LMs from virulent and avirulent strains is limited as is knowledge regarding their differential capacity to be recognized by the adaptive immune response. Here, we purified LM from the avirulent M. smegmatis and the virulent M. tuberculosis H(37)R(v), performed a comparative structural biochemical analysis, and addressed their ability to stimulate CD1b-restricted T cell clones. We found that M. tuberculosis H(37)R(v) produces a large neutral LM (TB-LM); in contrast, M. smegmatis produces a smaller linear acidic LM (SmegLM) with a high succinate content. Correspondingly, TB-LM was not as efficiently presented to CD1b-restricted T cells as SmegLM. Thus, here we correlate the structure-function relationships for LMs with CD1b-restricted T cell responses and provide evidence that the structural features of TB-LM contribute to its diminished T cell responsiveness.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Peter A Sieling
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jesús Arcos
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Rose Knaup
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Craig Bartling
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital of Ulm, D-89081 Ulm, Germany
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Larry S Schlesinger
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
8
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
9
|
Van Rhijn I, Nguyen TKA, Michel A, Cooper D, Govaerts M, Cheng TY, van Eden W, Moody DB, Coetzer JAW, Rutten V, Koets AP. Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur J Immunol 2010; 39:3031-41. [PMID: 19688747 DOI: 10.1002/eji.200939619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although CD1 proteins are known to present mycobacterial lipid antigens to T cells, there is little understanding of the in vivo behavior of T cells restricted by CD1a, CD1b and CD1c, and the relative immunogenicity and immunodominance of individual lipids within the total array of lipids that comprise a bacterium. Because bovines express multiple CD1 proteins and are natural hosts of Mycobacterium bovis and Mycobacterium avium paratuberculosis (MAP), we used them as a new animal model of CD1 function. Here, we report the surprisingly divergent responses against lipids produced by these two pathogens during infection. Despite considerable overlap in lipid content, only three out of 69 animals cross-react with M. bovis and MAP total lipid preparations. The unidentified immunodominant compound of M. bovis is a hydrophilic compound, whereas the immunodominant lipid of MAP is presented by CD1b and was identified as glucose monomycolate (GMM). The preferential recognition of GMM antigen by MAP-infected cattle may be explained by the higher expression of GMM by MAP than by M. bovis. The bacterial species-specific nature of the CD1-restricted, adaptive T-cell response affects the approach to development of lipid based immunodiagnostic tests.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Silk JD, Salio M, Brown J, Jones EY, Cerundolo V. Structural and functional aspects of lipid binding by CD1 molecules. Annu Rev Cell Dev Biol 2008; 24:369-95. [PMID: 18593354 DOI: 10.1146/annurev.cellbio.24.110707.175359] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past ten years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I molecules the CD1 proteins. We describe the events that have led to the discovery of the role of CD1 molecules, their pattern of intracellular trafficking, and their ability to sample different intracellular compartments for self- and foreign lipids. Structural and functional aspects of lipid presentation by CD1 molecules are presented in the context of the function of CD1-restricted T cells in antimicrobial responses, antitumor immunity, and the regulation of the tolerance and autoimmunity immunoregulatory axis. Particular emphasis is on invariant NKT (iNKT) cells and their ability to modulate innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jonathan D Silk
- Tumour Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Lee DJ, Sieling PA, Ochoa MT, Krutzik SR, Guo B, Hernandez M, Rea TH, Cheng G, Colonna M, Modlin RL. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8128-36. [PMID: 18056355 DOI: 10.4049/jimmunol.179.12.8128] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.
Collapse
Affiliation(s)
- Delphine J Lee
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 2007; 314:215-50. [PMID: 17593663 DOI: 10.1007/978-3-540-69511-0_9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD1 has been clearly shown to function as a microbial recognition system for activation of T cell responses, but its importance for mammalian protective responses against infections is still uncertain. The function of the group 1 CD1 isoforms, including human CD1a, CDlb, and CDLc, seems closely linked to adaptive immunity. These CD1 molecules control the responses of T cells that are highly specific for particular lipid antigens, the best known of which are abundantly expressed by pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium leprae. Studies done mainly on human circulating T cells ex vivo support a significant role for group I CD1-restricted T cells in protective immunity to mycobacteria and potentially other pathogens, although supportive data from animal models is currently limited. In contrast, group 2 CD1 molecules, which include human CD1d and its orthologs, have been predominantly associated with the activation of CD1d-restricted NKT cells, which appear to be more appropriately viewed as a facet of the innate immune system. Whereas the recognition of certain self-lipid ligands by CD d-restricted NKT cells is well accepted, the importance of these T cells in mediating adaptive immune recognition of specific microbial lipid antigens remains controversial. Despite continuing uncertainty about the role of CD 1d-restricted NKT cells in natural infections, studies in mouse models demonstrate the potential of these T cells to exert various effects on a wide spectrum of infectious diseases, most likely by serving as a bridge between innate and adaptive immune responses.
Collapse
Affiliation(s)
- S M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith Building Room 518, One Jimmy Fund Way, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Soilleux EJ, Sarno EN, Hernandez MO, Moseley E, Horsley J, Lopes UG, Goddard MJ, Vowler SL, Coleman N, Shattock RJ, Sampaio EP. DC-SIGN association with the Th2 environment of lepromatous lesions: cause or effect? J Pathol 2006; 209:182-9. [PMID: 16583355 DOI: 10.1002/path.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clinical spectrum of leprosy is related to patients' immune responses. Non-responsiveness towards Mycobacterium leprae (ML) seems to correlate with a Th2 cytokine profile. The reason for such a polarized immune response remains unclear. The C-type lectin, DC-SIGN, expressed by subsets of dendritic cells (DCs) and macrophages, has previously been associated with Th2 responses. Here we show abundant DC-SIGN expression in lepromatous but not borderline tuberculoid leprosy, in both HIV-positive and HIV-negative patients. Moreover, we demonstrate that DC-SIGN can act as an entry receptor for ML, as it does for M. tuberculosis, through the cell wall component lipoarabinomannan. DC-SIGN is expressed on virtually all ML-containing cells, providing further evidence for its role as a receptor. DC-SIGN may therefore be induced on macrophages in lepromatous leprosy and may then contribute to mycobacterial entry into these cells.
Collapse
Affiliation(s)
- E J Soilleux
- Department of Histopathology, Papworth Hospital, Papworth Everard, Cambridge CB3 8RE, and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|