1
|
Rosato C, Bettegazzi B, Intagliata P, Balbontin Arenas M, Zacchetti D, Lanati A, Zerbini G, Bandello F, Grohovaz F, Codazzi F. Redox and Calcium Alterations of a Müller Cell Line Exposed to Diabetic Retinopathy-Like Environment. Front Cell Neurosci 2022; 16:862325. [PMID: 35370555 PMCID: PMC8972164 DOI: 10.3389/fncel.2022.862325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and is the major cause of vision loss in the working-age population. Although DR is traditionally considered a microvascular disease, an increasing body of evidence suggests that neurodegeneration is an early event that occurs even before the manifestation of vasculopathy. Accordingly, attention should be devoted to the complex neurodegenerative process occurring in the diabetic retina, also considering possible functional alterations in non-neuronal cells, such as glial cells. In this work, we investigate functional changes in Müller cells, the most abundant glial population present within the retina, under experimental conditions that mimic those observed in DR patients. More specifically, we investigated on the Müller cell line rMC-1 the effect of high glucose, alone or associated with activation processes and oxidative stress. By fluorescence microscopy and cellular assays approaches, we studied the alteration of functional properties, such as reactive oxygen species production, antioxidant response, calcium homeostasis, and mitochondrial membrane potential. Our results demonstrate that hyperglycaemic-like condition per se is well-tolerated by rMC-1 cells but makes them more susceptible to a pro-inflammatory environment, exacerbating the effects of this stressful condition. More specifically, rMC-1 cells exposed to high glucose decrease their ability to counteract oxidative stress, with consequent toxic effects. In conclusion, our study offers new insights into Müller cell pathophysiology in DR and proposes a novel in vitro model which may prove useful to further investigate potential antioxidant and anti-inflammatory molecules for the prevention and/or treatment of DR.
Collapse
Affiliation(s)
- Clarissa Rosato
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pia Intagliata
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Daniele Zacchetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Lanati
- Vita-Salute San Raffaele University, Milan, Italy
- Valore Qualità, Pavia, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Grohovaz
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Franca Codazzi
| |
Collapse
|
2
|
Ferrari E, Corsini R, Burastero SE, Tanfani F, Spisni A. Thermal stability, ligand binding and allergenicity data of Mus m 1.0102 allergen and its cysteine mutants. Data Brief 2020; 29:105355. [PMID: 32190721 PMCID: PMC7068051 DOI: 10.1016/j.dib.2020.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 11/11/2022] Open
Abstract
The presented data were obtained with the lipocalin allergen Mus m 1.0102 and its cysteine mutants MM-C138A, MM-C157A and MM-C138,157A, whose structural features and unfold reversibility investigations are presented in the research article entitled "The allergen Mus m 1.0102: cysteine residues and molecular allergology" [1]. The data were obtained by means of a Dynamic Light Scattering-based thermal stability assay, a Fluorescence-based ligand-binding assay and a basophil degranulation test, and describe proteins' fold stability, ligand binding ability and allergenic potential, respectively. Analysis of the collected data produced the temperatures corresponding to the onset of the protein unfolding, the dissociation constants for N-Phenyl-1-naphthylamine ligand and the profiles of β-hexosaminidase release from RBL SX-38 cells, sensitized with the serum of selected allergic patients and incubated with increasing antigens concentrations. These data allow for comparison of the lipocalin allergen Mus m 1.0102 with its conserved cysteines mutants and, with regard to their potential application in allergy diagnostics and immunotherapy, they contribute to the process of recombinant allergen characterization and standardization.
Collapse
Affiliation(s)
- Elena Ferrari
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Romina Corsini
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126 Parma, Italy
| | | | - Fabio Tanfani
- Dept. Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Alberto Spisni
- Dept. Medicine and Surgery, University of Parma, via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Upregulation of Peroxiredoxin 3 Protects Afg3l2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4721950. [PMID: 31781336 PMCID: PMC6875171 DOI: 10.1155/2019/4721950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/03/2019] [Accepted: 09/14/2019] [Indexed: 02/03/2023]
Abstract
Several neurodegenerative disorders exhibit selective vulnerability, with subsets of
neurons more affected than others, possibly because of the high expression of an altered
gene or the presence of particular features that make them more susceptible to insults. On
the other hand, resilient neurons may display the ability to develop antioxidant defenses,
particularly in diseases of mitochondrial origin, where oxidative stress might contribute
to the neurodegenerative process. In this work, we investigated the oxidative stress
response of embryonic fibroblasts and cortical neurons obtained from
Afg3l2-KO mice. AFG3L2 encodes a subunit of a protease
complex that is expressed in mitochondria and acts as both quality control and regulatory
enzyme affecting respiration and mitochondrial dynamics. When cells were subjected to an
acute oxidative stress protocol, the survival of AFG3L2-KO MEFs was not significantly
influenced and was comparable to that of WT; however, the basal level of the antioxidant
molecule glutathione was higher. Indeed, glutathione depletion strongly affected the
viability of KO, but not of WT MEF, thereby indicating that oxidative stress is more
elevated in KO MEF even though well controlled by glutathione. On the other hand, when
cortical KO neurons were put in culture, they immediately appeared more vulnerable than WT
to the acute oxidative stress condition, but after few days in vitro, the situation was
reversed with KO neurons being more resistant than WT to acute stress. This compensatory,
protective competence was not due to the upregulation of glutathione, rather of two
mitochondrial antioxidant proteins: superoxide dismutase 2 and, at an even higher level,
peroxiredoxin 3. This body of evidence sheds light on the capability of neurons to
activate neuroprotective pathways and points the attention to peroxiredoxin 3, an
antioxidant enzyme that might be critical for neuronal survival also in other disorders
affecting mitochondria.
Collapse
|
4
|
Abstract
Lignins have shown remarkable antioxidant properties; acting as “scavengers” of free radicals physiologically produced by cell metabolisms; and exerting a protective action caused by the strong ability of these molecules to absorb UV radiation. Through preliminary Molecular Modeling studies and experimental studies in vivo and in vitro, a lignin hydrolysate compound has been shown to be an extremely versatile active ingredient, presenting soothing, anti-inflammatory, anti-itch, anti-oxidant, anti-aging and anti-pollution properties. The possible fields of application are therefore multiple; making this lignin hydrolysate a particularly interesting ingredient for topical dermatological compositions in the treatment of various skin disorders such as inflammation, edema, swelling, rash, redness, itching, chrono- and photo-induced skin aging. These manifestations are also the basis of more or less serious skin problems, making lignin hydrolysate capable of being used in cosmetic products for the eternal challenge of fighting skin aging, but also in medical devices that can be used to fight more painful and annoying symptoms, like those caused by dermatitis or psoriasis.
Collapse
|
5
|
Laffleur B, Debeaupuis O, Dalloul Z, Cogné M. B Cell Intrinsic Mechanisms Constraining IgE Memory. Front Immunol 2017; 8:1277. [PMID: 29180995 PMCID: PMC5694035 DOI: 10.3389/fimmu.2017.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Memory B cells and long-lived plasma cells are key elements of adaptive humoral immunity. Regardless of the immunoglobulin class produced, these cells can ensure long-lasting protection but also long-lasting immunopathology, thus requiring tight regulation of their generation and survival. Among all antibody classes, this is especially true for IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions even when present in minute amounts. IgE responses and memory crucially protect against parasites and toxic components of venoms, conferring selective advantages and explaining their conservation in all mammalian species despite a parallel broad spectrum of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic responses to allergens constitute the dark side of IgE responses, which can trigger multiple acute or chronic pathologic manifestations, some punctuated with life-threatening events. This Janus face of the IgE response and memory, both necessary and potentially dangerous, thus obviously deserves the most elaborated self-control schemes.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Zeinab Dalloul
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France
| | - Michel Cogné
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Nigro EA, Brini AT, Yenagi VA, Ferreira LM, Achatz-Straussberger G, Ambrosi A, Sanvito F, Soprana E, van Anken E, Achatz G, Siccardi AG, Vangelista L. Cutting Edge: IgE Plays an Active Role in Tumor Immunosurveillance in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:2583-8. [DOI: 10.4049/jimmunol.1601026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022]
|
7
|
Ferrari E, Casali E, Burastero SE, Spisni A, Pertinhez TA. The allergen Mus m 1.0102: Dissecting the relationship between molecular conformation and allergenic potency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1548-57. [PMID: 27519162 DOI: 10.1016/j.bbapap.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The species Mus musculus experiences an obligate proteinuria: predominant are the Major Urinary Proteins (MUPs), that, collectively known as the major mouse allergen Mus m 1, are among the most important aeroallergens for mouse allergic patients. The production of a soluble and stable hypoallergenic form of Mus m 1 is essential for the development of immunotherapeutic protocols to treat allergic symptoms. METHODS We introduced the substitution C138S in recombinant Mus m 1.0102, an allergenic isoform of Mus m 1. Solubility, conformation, stability and ability to refold after chemical denaturation were investigated with dynamic light scattering, circular dichroism, fluorescence and NMR spectroscopy. An in vitro degranulation assay was used to evaluate the protein allergenic potential, and compare it with Mus m 1.0102 and with an hypoallergenic variant bearing the substitution Y120A. RESULTS Mus m 1.0102-C138S retains a native-like fold revealing, however, local conformational alterations that influence some of its physical and allergenic properties: it is monodispersed, thermostable up to 56°C, able to reversibly unfold and it exhibits an enhanced allergenicity. CONCLUSIONS The unique free thiol group affects the solution structural stability of the native protein. Because the mutant C138S does not aggregate over time it is a good lead protein to develop diagnostic and therapeutic applications. GENERAL SIGNIFICANCE We elucidated the relationship between unfolding reversibility and sulphydryl reactivity. We ascribed the enhanced allergenicity of the mutant C138S to an increased accessibility of its allergenic determinants, an enticing feature to further investigate the structural elements of the allergen-IgE interface.
Collapse
Affiliation(s)
- Elena Ferrari
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Emanuela Casali
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | - Alberto Spisni
- Dept. Surgical Sciences, University of Parma, Parma, Italy.
| | - Thelma A Pertinhez
- Dept. of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy; Transfusion Medicine Unit, ASMN- IRCCS, Reggio Emilia, Italy
| |
Collapse
|
8
|
Ghosh D, Mueller GA, Schramm G, Edwards LL, Petersen A, London RE, Haas H, Gupta Bhattacharya S. Primary identification, biochemical characterization, and immunologic properties of the allergenic pollen cyclophilin cat R 1. J Biol Chem 2014; 289:21374-85. [PMID: 24939849 DOI: 10.1074/jbc.m114.559971] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cyclophilin (Cyp) allergens are considered pan-allergens due to frequently reported cross-reactivity. In addition to well studied fungal Cyps, a number of plant Cyps were identified as allergens (e.g. Bet v 7 from birch pollen, Cat r 1 from periwinkle pollen). However, there are conflicting data regarding their antigenic/allergenic cross-reactivity, with no plant Cyp allergen structures available for comparison. Because amino acid residues are fairly conserved between plant and fungal Cyps, it is particularly interesting to check whether they can cross-react. Cat r 1 was identified by immunoblotting using allergic patients' sera followed by N-terminal sequencing. Cat r 1 (∼ 91% sequence identity to Bet v 7) was cloned from a cDNA library and expressed in Escherichia coli. Recombinant Cat r 1 was utilized to confirm peptidyl-prolyl cis-trans-isomerase (PPIase) activity by a PPIase assay and the allergenic property by an IgE-specific immunoblotting and rat basophil leukemia cell (RBL-SX38) mediator release assay. Inhibition-ELISA showed cross-reactive binding of serum IgE from Cat r 1-allergic individuals to fungal allergenic Cyps Asp f 11 and Mala s 6. The molecular structure of Cat r 1 was determined by NMR spectroscopy. The antigenic surface was examined in relation to its plant, animal, and fungal homologues. The structure revealed a typical cyclophilin fold consisting of a compact β-barrel made up of seven anti-parallel β-strands along with two surrounding α-helices. This is the first structure of an allergenic plant Cyp revealing high conservation of the antigenic surface particularly near the PPIase active site, which supports the pronounced cross-reactivity among Cyps from various sources.
Collapse
Affiliation(s)
- Debajyoti Ghosh
- From the Bose Institute, 93/1 APC Road, Kolkata 700009, India,
| | - Geoffrey A Mueller
- the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gabriele Schramm
- the Research Centre Borstel, Leibniz Centre for Medicine and Biosciences, D-23845 Borstel, Germany, and
| | - Lori L Edwards
- the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Arnd Petersen
- the Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Centre for Lung Research, Parkallee 22, D-23845 Borstel, Germany
| | - Robert E London
- the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Helmut Haas
- the Research Centre Borstel, Leibniz Centre for Medicine and Biosciences, D-23845 Borstel, Germany, and
| | | |
Collapse
|
9
|
Nigro E, Siccardi A, Vangelista L. Role and Redirection of IgE against Cancer. Antibodies (Basel) 2013; 2:371-391. [DOI: 10.3390/antib2020371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
IgE is a highly elusive antibody class, yet a tremendously powerful elicitor of immune reactions. Despite huge efforts spent on the characterization and understanding of the IgE system many questions remain either unanswered or only marginally addressed. One above all relates to the role of IgE. A common doubt is based on whether IgE mode of action should only be relegated to anti-parasite immunity and allergic manifestations. In search for a hidden role of IgE, reports from several laboratories are described herein in which a natural IgE link to cancer or the experimental redirection of IgE against cancer have been investigated. Epidemiological and investigational studies are trying to elucidate a possible direct intervention of endogenous IgE against cancer, raising thus far no definitive evidence. Conversely, experimental approaches implementing several strategies and engineered IgE formats built up a series of convincing results indicating that cancer might be tackled by the effector functions of this immunoglobulin class. Because of its peculiar immune features, IgE may present a superior anti-tumor performance as compared to IgG. However, extreme care should be taken on how IgE-based anti-tumor approaches should be devised. Overall, IgE appears as a promising resource, likely destined to enrich the anti-cancer arsenal.
Collapse
Affiliation(s)
- Elisa Nigro
- Molecular Immunology Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
10
|
Vecchi L, Petris G, Bestagno M, Burrone OR. Selective targeting of proteins within secretory pathway for endoplasmic reticulum-associated degradation. J Biol Chem 2012; 287:20007-15. [PMID: 22523070 DOI: 10.1074/jbc.m112.355107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity.
Collapse
Affiliation(s)
- Lara Vecchi
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
11
|
Nigro EA, Soprana E, Brini AT, Ambrosi A, Yenagi VA, Dombrowicz D, Siccardi AG, Vangelista L. An Antitumor Cellular Vaccine Based on a Mini-Membrane IgE. THE JOURNAL OF IMMUNOLOGY 2011; 188:103-10. [DOI: 10.4049/jimmunol.1101842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Ferrari E, Breda D, Longhi R, Vangelista L, Nakaie CR, Elviri L, Casali E, Pertinhez TA, Spisni A, Burastero SE. In search of a vaccine for mouse allergy: significant reduction of Mus m 1 allergenicity by structure-guided single-point mutations. Int Arch Allergy Immunol 2011; 157:226-37. [PMID: 22041937 DOI: 10.1159/000327551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mouse urinary proteins are relevant allergens from mice urine. We used the recombinant protein Mus m 1 as an allergen model to identify if, by altering Mus m 1 architecture via single-point mutations, we could effectively modify its allergenicity. METHODS Based on structural considerations, we synthesized two single-point mutants, Mus m 1-Y120A and Mus m 1-Y120F, which were expected to harbor large structural alterations. Circular dichroism and fluorescence analysis showed significant conformational rearrangements of the aromatic side chains in the internal cavity of Mus m 1-Y120A when compared to Mus m 1-Y120F and Mus m 1. Evaluation of the allergenic potential of the recombinant molecules was performed in vitro with both immunochemical approaches and assays based on the measurement of basophil degranulation. Moreover, to assess the integrity of the T cell epitopes and as an in vitro measure of immunogenicity, we tested the reactivity of T lymphocytes from subjects allergic to mouse urine against proteins and synthetic peptides encompassing the immunodominant linear epitope containing the mutation. RESULTS We found that the selected point mutation was able to modulate the protein allergenicity, and to severely impair the recognition of Mus m 1 by IgE, while T cell reactivity was fully maintained. CONCLUSIONS In silico predicted, minimum selected structural modifications allowed to design one protein with reduced allergenicity and preserved immunogenicity. Structurally guided mutations can direct the design of proteins with reduced allergenicity which can be used as vaccines for a safer and more effective immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Experimental Medicine, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Blink SE, Fu YX. IgE regulates T helper cell differentiation through FcgammaRIII mediated dendritic cell cytokine modulation. Cell Immunol 2010; 264:54-60. [PMID: 20494341 DOI: 10.1016/j.cellimm.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 04/22/2010] [Accepted: 04/28/2010] [Indexed: 01/22/2023]
Abstract
Asthma and allergy are characterized by dysregulation of inflammatory responses toward Th2 responses and high serum levels of IgE. IgE plays a role in the effector phase by triggering the degranulation of mast cells after antigen-crosslinking but its role in the induction of helper T cell differentiation is unknown. We have previously shown lymphotoxin is required for maintaining physiological levels of serum IgE which minimize spontaneous Th1-mediated airway inflammation, suggesting a physiological role for IgE in the regulation of T helper cell differentiation. We describe the mechanism in which IgE modulates inflammation by regulating dendritic cell cytokine production. Physiological levels of IgE suppress IL-12 production in the spleen and lung, suggesting IgE limits Th1 responses in vivo. IgE directly stimulates dendritic cells through FcgammaRIII to suppress IL-12 in vitro and influences APC to skew CD4+ T cells toward Th2 differentiation. We demonstrate a novel role for IgE in regulating differentiation of adaptive inflammatory responses through direct interaction with FcgammaRIII on dendritic cells.
Collapse
Affiliation(s)
- Sarah E Blink
- Committee on Immunology, University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA.
| | | |
Collapse
|
14
|
Nigro EA, Brini AT, Soprana E, Ambrosi A, Dombrowicz D, Siccardi AG, Vangelista L. Antitumor IgE adjuvanticity: key role of Fc epsilon RI. THE JOURNAL OF IMMUNOLOGY 2009; 183:4530-6. [PMID: 19748979 DOI: 10.4049/jimmunol.0900842] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Working with C57BL/6 mouse tumor models, we had previously demonstrated that vaccination with IgE-coated tumor cells can protect against tumor challenge, an observation that supports the involvement of IgE in antitumor immunity. The adjuvant effect of IgE was shown to result from eosinophil-dependent priming of the T cell-mediated adaptive immune response. The protective effect is likely to be mediated by the interaction of tumor cell-bound IgE with receptors, which then trigger the release of mediators, recruitment of effector cells, cell killing and tumor Ag cross-priming. It was therefore of utmost importance to demonstrate the strict dependence of the protective effect on IgE receptor activation. First, the protective effect of IgE was confirmed in a BALB/c tumor model, in which IgE-loaded modified VV Ankara-infected tumor cells proved to be an effective cellular vaccine. However, the protective effect was lost in Fc(epsilon)RIalpha(-/-) (but not in CD23(-/-)) knockout mice, showing the IgE-Fc(epsilo)nRI interaction to be essential. Moreover, human IgE (not effective in BALB/c mice) had a protective effect in the humanized knockin mouse (Fc(epsilon)RIalpha(-/-) hFc(epsilon)RIalpha(+)). This finding suggests that the adjuvant effect of IgE could be exploited for human therapeutics.
Collapse
Affiliation(s)
- Elisa A Nigro
- Department of Biology and Genetics, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodríguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H. AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 2008; 63:1255-66. [PMID: 18671772 DOI: 10.1111/j.1398-9995.2008.01768.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies have suggested inverse associations between allergic diseases and malignancies. As a proof of concept for the capability of immunoglobulin E (IgE) to destruct tumor cells, several experimental strategies have evolved to specifically target this antibody class towards relevant tumor antigens. It could be demonstrated that IgE antibodies specific to overexpressed tumor antigens have been superior to any other immunoglobulin class with respect to antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) reactions. In an alternative approach, IgE nonspecifically attached to tumor cells proved to be a powerful adjuvant establishing tumor-specific immune memory. Active Th2 immunity could also be achieved by applying an oral immunization regimen using mimotopes, i.e. epitope mimics of tumor antigens. The induced IgE antibodies could be cross-linked by live tumor cells leading to tumoricidic mediator release. Thus, IgE antibodies may not only act in natural tumor surveillance, but could possibly also be exploited for tumor control in active and passive immunotherapy settings. Thereby, eosinophils, mast cells and macrophages can be armed with the cytophilic IgE and become potent anti-tumor effectors, able to trace viable tumor cells in the tissues. It is strongly suggested that the evolving new field AllergoOncology will give new insights into the role of IgE-mediated allergy in malignancies, possibly opening new avenues for tumor therapy.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- Department of Pathophysiology, Center of Physiology, Pathophysiology and Immunology, Medical University Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Predonzani A, Arnoldi F, López-Requena A, Burrone OR. In vivo site-specific biotinylation of proteins within the secretory pathway using a single vector system. BMC Biotechnol 2008; 8:41. [PMID: 18423015 PMCID: PMC2373293 DOI: 10.1186/1472-6750-8-41] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/18/2008] [Indexed: 11/12/2022] Open
Abstract
Background Due to its extremely high strength, the interaction between biotin and (strept)avidin has been exploited for a large number of biotechnological applications. Site-specific biotinylation of proteins in vivo can be achieved by co-expressing in mammalian cells the protein of interest fused to a 15 amino acid long Biotin Acceptor Peptide (BAP) and the bacterial biotin-protein ligase BirA, which specifically recognizes and attaches a biotin to the single lysine residue of the BAP sequence. However, this system is mainly based on the contemporaneous use of two different plasmids or on induction of expression of two proteins through an IRES-driven mechanism. Results We developed a single bigenic plasmid that contains two independent transcriptional units for the co-expression of both the protein tagged with BAP and an engineered version of the BirA enzyme. Upstream of the cDNA encoding BirA, a signal secretion leader sequence was added to allow translocation of the enzyme to the secretory pathway. Three different recombinant antibodies in the scFv format, a membrane bound and secretory truncated IgE Fc fragment and a soluble version of the human IgE high affinity receptor were shown to be efficiently biotinylated and to maintain their binding properties in immunofluorescence microscopy, flow cytometry and ELISA assays. Conclusion The present study shows the universal applicability to both secretory and membrane bound proteins of a single bigenic plasmid to induce the site-specific in vivo biotinylation of target molecules tagged with a short acceptor peptide. These molecules could be easily obtained from supernatants or extracts of mammalian cells and used for a wide range of biological applications.
Collapse
Affiliation(s)
- Andrea Predonzani
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | |
Collapse
|
17
|
Abstract
The spreading epidemic of allergies and asthma has heightened interest in IgE, the central player in the allergic response. The activity of IgE is associated with a network of proteins; prominent among these are its two principal receptors, FcepsilonRI (high-affinity Fc receptor for IgE) and CD23, as well as galectin-3 and several co-receptors for CD23, notably CD21 and various integrins. Here, we review recent progress in uncovering the structures of these proteins and their complexes, and in our understanding of how IgE exerts its effects and how its expression is regulated. The information that has emerged suggests new therapeutic directions for combating allergic disease.
Collapse
|
18
|
Poggianella M, Bestagno M, Burrone OR. The extracellular membrane-proximal domain of human membrane IgE controls apoptotic signaling of the B cell receptor in the mature B cell line A20. THE JOURNAL OF IMMUNOLOGY 2006; 177:3597-605. [PMID: 16951319 DOI: 10.4049/jimmunol.177.6.3597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag engagement of BCR in mature B cells can deliver specific signals, which decide cell survival or cell death. Circulating membrane IgE+ (mIgE+) cells are found in extremely low numbers. We hypothesized that engagement of an epsilonBCR in a mature isotype-switched B cell could induce apoptosis. We studied the role of the extracellular membrane-proximal domain (EMPD) of human mIgE upon BCR engagement with anti-Id Abs. Using mutants lacking the EMPD, we show that this domain is involved in controlling Ca2+ mobilization in immunoreceptors of both gamma and epsilon isotypes, as well as apoptosis in signaling originated only from the epsilonBCR. We mapped to the epsilonCH4 ectodomain the region responsible for apoptosis in EMPD-deleted receptors. Ca2+ mobilization was not related to apoptotic signaling. This apoptotic pathway was caspase independent, involved ERK1/2 phosphorylation and was partially rescued by CD40 costimulation. We therefore conclude that the EMPD of human mIgE is a key control element of apoptotic signaling delivered through engagement of epsilonBCR within the context of a mature B cell.
Collapse
Affiliation(s)
- Monica Poggianella
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | |
Collapse
|
19
|
Burastero SE, Paolucci C, Breda D, Monasterolo G, Rossi RE, Vangelista L. Unreliable measurement of basophil maximum leukotriene release with the Bühlmann CAST 2000 enzyme-linked immunosorbent assay kit. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:420-2. [PMID: 16522787 PMCID: PMC1391964 DOI: 10.1128/cvi.13.3.420-422.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bühlmann CAST 2000 enzyme-linked immunosorbent assay is a potentially useful assay for measuring sulfidoleukotrienes released in vitro by allergen-challenged basophils. However, we observed that the positive-control reagent yielded positive signals in cell-free systems. These false-positive results depended on using a mouse anti-FcepsilonRI monoclonal antibody and were prevented by degranulation-inducing reagents other than mouse monoclonal antibodies.
Collapse
Affiliation(s)
- S E Burastero
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| | | | | | | | | | | |
Collapse
|