1
|
Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P, Jacobs J. The CD70-CD27 axis in oncology: the new kids on the block. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:12. [PMID: 34991665 PMCID: PMC8734249 DOI: 10.1186/s13046-021-02215-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70. In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.
Collapse
Affiliation(s)
- Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium. .,Department of Pathology, Antwerp University Hospital, Edegem, Belgium.
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Argenx, Zwijnaarde, Ghent, Belgium
| |
Collapse
|
2
|
Wolfrom CM, Laurent M, Deschatrette J. Can we negotiate with a tumor? PLoS One 2014; 9:e103834. [PMID: 25084359 PMCID: PMC4118912 DOI: 10.1371/journal.pone.0103834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
Recent progress in deciphering the molecular portraits of tumors promises an era of more personalized drug choices. However, current protocols still follow standard fixed-time schedules, which is not entirely coherent with the common observation that most tumors do not grow continuously. This unpredictability of the increases in tumor mass is not necessarily an obstacle to therapeutic efficiency, particularly if tumor dynamics could be exploited. We propose a model of tumor mass evolution as the integrated result of the dynamics of two linked complex systems, tumor cell population and tumor microenvironment, and show the practical relevance of this nonlinear approach.
Collapse
Affiliation(s)
- Claire M. Wolfrom
- Equipe « Dynamiques cellulaires et modélisation », Inserm Unité 757, Université Paris-Sud, Orsay, France
| | - Michel Laurent
- Equipe « Dynamiques cellulaires et modélisation », Inserm Unité 757, Université Paris-Sud, Orsay, France
| | - Jean Deschatrette
- Equipe « Dynamiques cellulaires et modélisation », Inserm Unité 757, Université Paris-Sud, Orsay, France
| |
Collapse
|
3
|
Stroma-dependent apoptosis in clonal hematopoietic precursors correlates with expression of PYCARD. Blood 2008; 113:649-58. [PMID: 18945969 DOI: 10.1182/blood-2008-04-152686] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the marrow microenvironment in the pathophysiology of myelodysplastic syndromes (MDSs) remains controversial. Using stromal/hematopoietic cell cocultures, we investigated the effects of stroma-derived signals on apoptosis sensitivity in hematopoietic precursors. The leukemia-derived cell line KG1a is resistant to proapoptotic ligands. However, when cocultured with the human stromal cell line HS5 (derived from normal marrow) and exposed to tumor necrosis factor-alpha (TNF-alpha), KG1a cells showed caspase-3 activation and induction of apoptosis. Apoptosis was contact dependent. Identical results were obtained in coculture with primary stroma. Gene-expression profiling of KG1a cells identified coculture-induced up-regulation of various genes involved in apoptosis, including PYCARD. Suppression of PYCARD expression in KG1a by miRNA interfered with apoptosis. Knockdown of the TNF receptor 1 (TNFR1) or TNFR2 in HS5 cells had no effect. However, knockdown of R1 in KG1a cells prevented TNF-alpha-induced apoptosis, while apoptosis was still induced by TNF-alpha-related apoptosis-inducing ligand. Primary CD34(+) cells from MDS marrow, when cocultured with HS5 and TNF-alpha, also underwent apoptosis. In contrast, no apoptosis was observed in CD34(+) cells from the marrow of healthy donors. These data indicate that stroma may convey not only protective effects on hematopoietic cells, but, dependent upon the milieu, may also facilitate apoptosis.
Collapse
|
4
|
High expression of CD40 on B-cell precursor acute lymphoblastic leukemia blasts is an independent risk factor associated with improved survival and enhanced capacity to up-regulate the death receptor CD95. Blood 2008; 112:1028-34. [PMID: 18552209 DOI: 10.1182/blood-2007-11-123315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 and CD27, members of the tumor necrosis factor receptor (TNFR) family, are critical regulators of lymphocyte growth and differentiation. In B-cell precursor acute lymphoblastic leukemia (BCP-ALL), we prospectively assessed the impact of CD40 and CD27 on outcome in 121 children treated according to the CoALL06-97 protocol. Expression of both CD40 and CD27 was found to be significantly higher in low- than in high-risk patients as defined by standard clinical risk parameters such as age and white blood cell count. In addition, in multivariable analysis, a very high percentage of CD40(+) blasts at diagnosis was identified as an independent favorable prognostic factor for relapse-free survival. Of note, high CD40 expression particularly protected against late relapse. In B cells, CD40 is known to enhance both antigen-presenting capacity and sensitivity to proapoptotic signals. Yet, although CD40 ligation does result in significant up-regulation of CD80/CD86 in our cohort, it is up-regulation of the death receptor CD95 that significantly correlates with the percentage of CD40(+) blasts. Thus very high expression of CD40 on BCP-ALL blasts is an independent prognostic marker indicative of superior relapse-free survival that may in part be due to CD40-dependent death receptor up-regulation.
Collapse
|