1
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
2
|
Alobaid M, Richards SJ, Alexander M, Gibson M, Ghaemmaghami A. Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties. Mater Today Bio 2020; 8:100080. [PMID: 33205040 PMCID: PMC7649522 DOI: 10.1016/j.mtbio.2020.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022] Open
Abstract
New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study, we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function and crucially the impact of such changes on downstream adaptive immune responses. Our data show that a selection of monosaccharides significantly suppress lipopolysaccharide-induced DC activation as evidenced by a reduction in CD40 expression, IL-12 production, and indoleamine 2,3-dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of the induction of an anti-inflammatory or regulatory phenotype in DCs, which was further confirmed in DC-T cell co-cultures where DCs cultured on the 'regulatory' monosaccharide-coated surfaces were shown to induce naïve T cell polarization toward regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation toward an immune-regulatory phenotype. The ability to fine-tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices, and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable.
Collapse
Key Words
- (Gal1), 100% 1-amino-1-deoxy-β-d-galactose
- (Gal1–Gal2), 50% 1-amino-1-deoxy-β-d-galactose + 50% 2-amino-2-deoxy-β-d-galactose
- (Gal2), 100% 2-amino-2-deoxy-β-d-galactose
- (Gal2–Man1), 90% 2-amino-2-deoxy-β-d-galactose + 10% 1-amino-1-deoxy-β-d-mannose
- (Gal2–Man2), 2-amino-2-deoxy-β-d-galactose + 10% 2-amino-2-deoxy-β-d-mannose
- (Man1–Man2), 40% 1-amino-1-deoxy-β-d-mannose + 60% 2-amino-2-deoxy-β-d-mannose
- CLR, C-type lectin receptor
- Carbohydrates
- DC-SIGN, Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin
- DCs, Dendritic cells
- Dendritic cells
- FBS, Fetal bovine serum
- Fucose
- Galactose
- IDO, Indoleamine 2,3-dioxygenase
- Immune modulation
- Immune-instructive materials
- LPS, Lipopolysaccharide
- MFI, Median fluorescence intensity
- MR, Mannose receptor
- MT, 1-methyl-DL-tryptophan
- Mannose
- PRR, Pattern recognition receptor
- Polymers
- T cells
Collapse
Affiliation(s)
- M.A. Alobaid
- Immunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - S.-J. Richards
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - M.R. Alexander
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - M.I. Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - A.M. Ghaemmaghami
- Immunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| |
Collapse
|
3
|
Cruz LJ, Tacken PJ, van der Schoot JMS, Rueda F, Torensma R, Figdor CG. ICAM3-Fc Outperforms Receptor-Specific Antibodies Targeted Nanoparticles to Dendritic Cells for Cross-Presentation. Molecules 2019; 24:molecules24091825. [PMID: 31083610 PMCID: PMC6540027 DOI: 10.3390/molecules24091825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Optimal targeting of nanoparticles (NP) to dendritic cells (DCs) receptors to deliver cancer-specific antigens is key to the efficient induction of anti-tumour immune responses. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing tètanus toxoid and gp100 melanoma-associated antigen, toll-like receptor adjuvants were targeted to the DC-SIGN receptor in DCs by specific humanized antibodies or by ICAM3-Fc fusion proteins, which acts as the natural ligand. Despite higher binding and uptake efficacy of anti-DC-SIGN antibody-targeted NP vaccines than ICAM3-Fc ligand, no difference were observed in DC activation markers CD80, CD83, CD86 and CCR7 induced. DCs loaded with NP coated with ICAM3-Fc appeared more potent in activating T cells via cross-presentation than antibody-coated NP vaccines. This fact could be very crucial in the design of new cancer vaccines.
Collapse
Affiliation(s)
- Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Paul J Tacken
- Department of Tumor Immunology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Johan M S van der Schoot
- Department of Tumor Immunology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Felix Rueda
- Department of Biochemistry and Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Sioud M. Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11020176. [PMID: 30717461 PMCID: PMC6406640 DOI: 10.3390/cancers11020176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Therapeutic dendritic cell (DC) cancer vaccines rely on the immune system to eradicate tumour cells. Although tumour antigen-specific T cell responses have been observed in most studies, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. The incorporation of small interfering RNAs (siRNAs) against immunosuppressive factors in the manufacturing process of DCs can turn the vaccine into potent immune stimulators. Additionally, siRNA modification of ex vivo-expanded T cells for adoptive immunotherapy enhanced their killing potency. Most of the siRNA-targeted immune inhibitory factors have been successful in that their blockade produced the strongest cytotoxic T cell responses in preclinical and clinical studies. Cancer patients treated with the siRNA-modified DC vaccines showed promising clinical benefits providing a strong rationale for further development of these immunogenic vaccine formulations. This review covers the progress in combining siRNAs with DC vaccines or T cell therapy to boost anti-tumour immunity.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Montebello, N-0310 Oslo, Norway.
| |
Collapse
|
5
|
Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M. Review of computational methods for virus-host protein interaction prediction: a case study on novel Ebola-human interactions. Brief Funct Genomics 2018; 17:381-391. [PMID: 29028879 PMCID: PMC7109800 DOI: 10.1093/bfgp/elx026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of potential virus-host interactions is useful and vital to control the highly infectious virus-caused diseases. This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been published. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for prediction of novel virus-host interactions for infectious diseases followed by a case study on EBOV-human interactions. The assessment result shows that the predicted human host proteins are highly similar with known human interaction partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways and host-pathogen relationships.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Pritha Dutta
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mahantapas Kundu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, India
| |
Collapse
|
6
|
A Rift Valley fever virus Gn ectodomain-based DNA vaccine induces a partial protection not improved by APC targeting. NPJ Vaccines 2018; 3:14. [PMID: 29707242 PMCID: PMC5910381 DOI: 10.1038/s41541-018-0052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 01/20/2023] Open
Abstract
Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial—although incomplete—protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus. A vaccine made from the genome of Rift Valley fever virus (RVFV) offers partial protection, but pieces of the puzzle are missing, say scientists. French and Spanish researchers, led by the French National Institute for Agricultural Research’s Isabelle Schwartz-Cornil, tested in sheep three slightly-differing vaccine candidates using RVFV genes. Such DNA vaccines are designed to generate proteins which a host’s immune system can use to arm itself against a genuine viral infection. Two of the candidates, designed to target cells that would present the viral proteins to the host’s immune system, provided some benefit to the vaccinated sheep. However, the third untargeted candidate, was the most efficient at protecting sheep, although not completely, and at boosting antibody levels despite not neutralizing the virus. These results provide hope for DNA vaccines against RVFV, and offer direction for future research effort.
Collapse
|
7
|
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD, den Haan JMM. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J Leukoc Biol 2017; 102:1017-1034. [PMID: 28729358 PMCID: PMC5597514 DOI: 10.1189/jlb.5mr0217-059rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigen-specific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes.
Collapse
Affiliation(s)
- Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
8
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
9
|
Dutta P, Halder AK, Basu S, Kundu M. A survey on Ebola genome and current trends in computational research on the Ebola virus. Brief Funct Genomics 2017; 17:374-380. [DOI: 10.1093/bfgp/elx020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
10
|
Léger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis. Traffic 2016; 17:639-56. [PMID: 26990254 DOI: 10.1111/tra.12393] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marilou Tetard
- INRS-Institut Armand-Frappier, Laval, Canada.,Current address: Inserm UMR_S1134, Paris, France
| | - Berthe Youness
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada.,Reproduction Genetics Unit, Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital, Heidelberg, Germany
| | - Nicole Cordes
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ronan N Rouxel
- INRS-Institut Armand-Frappier, Laval, Canada.,UR_0892 Unité de Virologie et Immunologie Moléculaire, INRA, CRJ, Jouy-en-Josas, France
| | - Marie Flamand
- Structural Virology, Institut Pasteur, Paris, France
| | - Pierre-Yves Lozach
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada
| |
Collapse
|
11
|
Arsov Z, Švajger U, Mravljak J, Pajk S, Kotar A, Urbančič I, Štrancar J, Anderluh M. Internalization and Accumulation in Dendritic Cells of a Small pH-Activatable Glycomimetic Fluorescent Probe as Revealed by Spectral Detection. Chembiochem 2015; 16:2660-7. [DOI: 10.1002/cbic.201500376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia; Šlajmerjeva 6 1000 Ljubljana Slovenia
| | - Janez Mravljak
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| | - Stane Pajk
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Anita Kotar
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Slovenian NMR Centre; National Institute of Chemistry; Hajdrihova 19 1000 Ljubljana Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
12
|
Sehgal K, Dhodapkar KM, Dhodapkar MV. Targeting human dendritic cells in situ to improve vaccines. Immunol Lett 2014; 162:59-67. [PMID: 25072116 DOI: 10.1016/j.imlet.2014.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.
Collapse
Affiliation(s)
- Kartik Sehgal
- Department of Medicine, Yale University, New Haven, CT, United States
| | | | | |
Collapse
|
13
|
Maglinao M, Eriksson M, Schlegel MK, Zimmermann S, Johannssen T, Götze S, Seeberger PH, Lepenies B. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J Control Release 2014; 175:36-42. [DOI: 10.1016/j.jconrel.2013.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 11/24/2022]
|
14
|
Kawano M, Matsui M, Handa H. SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev Vaccines 2014; 12:199-210. [DOI: 10.1586/erv.12.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Xu W, Banchereau J. The antigen presenting cells instruct plasma cell differentiation. Front Immunol 2014; 4:504. [PMID: 24432021 PMCID: PMC3880943 DOI: 10.3389/fimmu.2013.00504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023] Open
Abstract
The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only “signal 1” (the antigen), but also “signal 2” to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.
Collapse
Affiliation(s)
- Wei Xu
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Roche Glycart AG , Schlieren , Switzerland
| | - Jacques Banchereau
- The Jackson Laboratory, Institute for Genomic Medicine , Farmington, CT , USA
| |
Collapse
|
16
|
Abstract
The past decade has seen tremendous developments in novel cancer therapies through the targeting of tumor-cell-intrinsic pathways whose activity is linked to genetic alterations and the targeting of tumor-cell-extrinsic factors, such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprecedented speed after the demonstration that T cells can efficiently reject tumors and that their antitumor activity can be enhanced with antibodies against immune-regulatory molecules (checkpoint blockade). Current immunotherapy strategies include monoclonal antibodies against tumor cells or immune-regulatory molecules, cell-based therapies such as adoptive transfer of ex-vivo-activated T cells and natural killer cells, and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how the current understanding of dendritic cell and T cell biology might enable the development of next-generation curative therapies for individuals with cancer.
Collapse
|
17
|
Targeting antigens to dendritic cell receptors for vaccine development. JOURNAL OF DRUG DELIVERY 2013; 2013:869718. [PMID: 24228179 PMCID: PMC3817681 DOI: 10.1155/2013/869718] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed.
Collapse
|
18
|
Palucka K, Banchereau J. Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25:396-402. [PMID: 23725656 DOI: 10.1016/j.coi.2013.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Owing to their properties, dendritic cells (DCs) are often called 'nature's adjuvants' and thus have become the natural targets for antigen delivery. DCs provide an essential link between the innate and the adaptive immune responses. DCs are at the center of the immune system owing to their ability to control both tolerance and immunity. DCs are thus key targets for both preventive and therapeutic vaccination. Herein, we will discuss recent progresses in our understanding of DC subsets physiology as it applies to vaccination.
Collapse
Affiliation(s)
- Karolina Palucka
- Ralph M. Steinmann Center for Cancer Vaccines, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA.
| | | |
Collapse
|
19
|
Xiao L, Hung KC, Takahashi TT, Joo KI, Lim M, Roberts RW, Wang P. Antibody-mimetic ligand selected by mRNA display targets DC-SIGN for dendritic cell-directed antigen delivery. ACS Chem Biol 2013; 8:967-77. [PMID: 23427768 DOI: 10.1021/cb300680c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendritic cell (DC)-based vaccines have shown promise as an immunotherapeutic modality for cancer and infectious diseases in many preclinical studies and clinical trials. Provenge (sipuleucel-T), a DC-based vaccine based on ex vivo-generated autologous DCs loaded with antigens, has recently received FDA approval for prostate cancer treatment, further validating the potential of DC-based vaccine modalities. However, direct antigen delivery to DCs in vivo via DC-specific surface receptors would enable a more direct and less laborious approach to immunization. In this study, the recombinant extracellular domains (ECD) of human and mouse DC-SIGN (hDC-SIGN and mDC-SIGN) were generated as DC-specific targets for mRNA display. Accordingly, an antibody-mimetic library was constructed by randomizing two exposed binding loops of an expression-enhanced 10th human fibronectin type III domain (e10Fn3). After three rounds of selection against mDC-SIGN, followed by four rounds of selection against hDC-SIGN, we were able to evolve several dual-specific ligands, which could bind to both soluble ECD of human and mouse DC-SIGNs. Using a cell-binding assay, one ligand, eFn-DC6, was found to have high affinity to hDC-SIGN and moderate affinity to mDC-SIGN. When fused with an antigenic peptide, eFn-DC6 could direct the antigen delivery and presentation by human peripheral blood mononuclear cell (PBMC)-derived DCs and stimulate antigen-specific CD8(+) T cells to secrete inflammatory cytokines. Taken together, these results demonstrate the utility of mRNA display to select protein carriers for DC-based vaccination and offer in vitro evidence that the antibody-mimetic ligand eFn-DC6 represents a promising candidate for the development of an in vivo DC-based vaccine in humans.
Collapse
Affiliation(s)
- Liang Xiao
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Kuo-Chan Hung
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Terry T. Takahashi
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Kye-Il Joo
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Matthew Lim
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Richard W. Roberts
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| | - Pin Wang
- Mork
Family Department of Chemical Engineering and Materials Science, ‡Department of Biomedical
Engineering, §Department of Pharmacology and Pharmaceutical Sciences, ⊥Department of Biochemistry
and Molecular Biology, ¶Department of Chemistry, and ∥Department of Biology, University of Southern California, Los
Angeles, California 90089, United States
| |
Collapse
|
20
|
Tacken PJ, Ter Huurne M, Torensma R, Figdor CG. Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking. Eur J Immunol 2012; 42:1989-98. [PMID: 22653683 DOI: 10.1002/eji.201142258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DCs are regarded as key APCs that initiate humoral and cellular immune responses. Consequently, targeted delivery of Ag toward DC-specific receptors enhances vaccine efficacy. DC-SIGN is a C-type lectin receptor that facilitates DC-specific delivery of Ag. This is accomplished by conjugating Ag to receptor-specific Ab or carbohydrate ligands that bind to its carbohydrate recognition domain. Here, we investigated the fate of DC-SIGN following receptor triggering with Ab. Both whole and single-chain Ab induced rapid internalization of about half of the surface receptor molecules. Biochemical studies showed that about half of the receptor molecules were still intracellular after 3 h, while minimal or no resurfacing of internalized or newly synthesized unbound DC-SIGN molecules was observed. Prolonged exposure of DCs to DC-SIGN Ab, but not carbohydrate ligands, resulted in reduced receptor expression levels, which lasted up to 2 days following removal of the Ab. In addition, exposure to DC-SIGN Ab reduced the ability of the receptor to internalize. Consequently, DC-SIGN showed a poor ability to accumulate targeting Abs within DCs. Vaccine efficacy may therefore be enhanced by strategies increasing the amount of Ag entering via a single receptor molecule, such as the use of targeting moieties allowing DC-SIGN recycling or Ab-coated vaccine carriers.
Collapse
Affiliation(s)
- Paul J Tacken
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
22
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
23
|
Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood 2011; 118:4111-9. [PMID: 21860028 DOI: 10.1182/blood-2011-04-346957] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Targeting antigens to dendritic cell (DC)-specific receptors, such as DC-SIGN, induces potent T cell-mediated immune responses. DC-SIGN is a transmembrane C-type lectin receptor with a long extracellular neck region and a carbohydrate recognition domain (CRD). Thus far, only antibodies binding the CRD have been used to target antigens to DC-SIGN. We evaluated the endocytic pathway triggered by antineck antibodies as well as their intracellular routing and ability to induce CD8(+) T-cell activation. In contrast to anti-CRD antibodies, antineck antibodies induced a clathrin-independent mode of DC-SIGN internalization, as demonstrated by the lack of colocalization with clathrin and the observation that silencing clathrin did not affect antibody internalization in human DCs. Interestingly, we observed that anti-neck and anti-CRD antibodies were differentially routed within DCs. Whereas anti-CRD antibodies were mainly routed to late endosomal compartments, anti-neck antibodies remained associated with early endosomal compartments positive for EEA-1 and MHC class I for up to 2 hours after internalization. Finally, cross-presentation of protein antigen conjugated to antineck antibodies was approximately 1000-fold more effective than nonconjugated antigen. Our studies demonstrate that anti-neck antibodies trigger a distinct mode of DC-SIGN internalization that shows potential for targeted vaccination strategies.
Collapse
|
24
|
Tacken PJ, Figdor CG. Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 2011; 23:12-20. [PMID: 21269839 DOI: 10.1016/j.smim.2011.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/05/2011] [Indexed: 12/13/2022]
Abstract
During the past decade, the immunotherapeutic potential of ex vivo generated professional antigen presenting dendritic cells (DCs) has been explored in the clinic. Albeit safe, clinical results have thus far been limited. A major disadvantage of current cell-based dendritic cell (DC) therapies, preventing universal implementation of this form of immunotherapy, is the requirement that vaccines need to be tailor made for each individual. Targeted delivery of antigens to DC surface receptors in vivo would circumvent this laborious and expensive ex vivo culturing steps involved with these cell-based therapies. In addition, the opportunity to target natural and often rare DC subsets in vivo might have advantages over loading more artificial ex vivo cultured DCs. Preclinical studies show targeting antigens to DCs effectively induces humoral responses, while cellular responses are induced provided a DC maturation or activation stimulus is co-administered. Here, we discuss strategies to target antigens to distinct DC subsets and to simultaneously employ adjuvants to activate these cells to induce immunity.
Collapse
Affiliation(s)
- Paul J Tacken
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
25
|
Sierra-Filardi E, Estecha A, Samaniego R, Fernández-Ruiz E, Colmenares M, Sánchez-Mateos P, Steinman RM, Granelli-Piperno A, Corbí AL. Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol 2010; 47:840-8. [DOI: 10.1016/j.molimm.2009.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 09/20/2009] [Accepted: 09/30/2009] [Indexed: 12/26/2022]
|
26
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Tang CK, Sheng KC, Apostolopoulos V, Pietersz GA. Protein/peptide and DNA vaccine delivery by targeting C-type lectin receptors. Expert Rev Vaccines 2008; 7:1005-18. [PMID: 18767950 DOI: 10.1586/14760584.7.7.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
C-type lectin receptors (CLRs) are a class of pathogen-recognition receptors that are actively investigated in the field of vaccine delivery. Many of their properties have functions linked to the immune system. These receptors are expressed abundantly on antigen-presenting cells and are considered to be the sentinels of immune surveillance owing to their endocytic nature and the ability to recognize a diverse range of pathogens through recognition of pathogen-associated molecular patterns. CLRs are also involved in the processes of antigen presentation mediated through the induction of dendritic cell maturation and cytokine production. These properties engender CLRs to be ideal for vaccine targeting. Conversely, CLRs also function to recognize glycosylated self-antigens to induce homeostatic control and tolerance. In this review, we will describe the various preclinical/clinical vaccination strategies to target antigens and plasmid DNA to this diverse class of receptors.
Collapse
Affiliation(s)
- Choon-Kit Tang
- Burnet Institute, Austin Campus, BioOrganic and Medicinal Chemistry Laboratory, Studley Road, Heidelberg, VIC 3084, Australia.
| | | | | | | |
Collapse
|
28
|
Gijzen K, Raymakers RAP, Broers KM, Figdor CG, Torensma R. Interaction of acute lymphopblastic leukemia cells with C-type lectins DC-SIGN and L-SIGN. Exp Hematol 2008; 36:860-70. [PMID: 18375037 DOI: 10.1016/j.exphem.2008.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/13/2022]
Abstract
The C-type lectins DC-SIGN (CD209) and L-SIGN (CD299) recognize defined carbohydrates expressed on pathogens and cells. Those lectins are expressed on dendritic cells (DC) and/or on liver-sinusoidal endothelial cells. Both cell types modulate immune responses. In acute lymphoblastic leukemia (ALL), aberrant glycosylation of blast cells can alter their interaction with the C-type lectins DC-SIGN and L-SIGN, thereby affecting their immunological elimination. We investigated whether recombinant DC-SIGN and L-SIGN bind to blood or bone marrow cells from B- and T-ALL patients and compared that with binding of peripheral blood lymphocytes from healthy donors. It was found that increased binding of ALL cells to DC-SIGN and L-SIGN was observed compared to cells from healthy donors. Furthermore, L-SIGN bound a higher percentage of leukemic and normal cells than DC-SIGN. B-ALL bone marrow cells showed the highest binding to L-SIGN. DC-SIGN bound equally well to B-ALL and T-ALL cells. Within ALL subtypes, DC-SIGN binding was higher with mature T-ALL. Interestingly, our data demonstrate that increased binding of DC-SIGN and L-SIGN to peripheral leukemic cells from B-ALL patients is associated with poor survival. These data demonstrate that high binding of B-ALL peripheral blood cells to DC-SIGN and L-SIGN correlates with poor prognosis. Apparently, when B-ALL cells enter the blood circulation and are able to interact with DC-SIGN and L-SIGN the immune response is shifted toward tolerance. Additional studies are necessary to ascertain the possible role of these results in terms of disease pathogenesis and their potential as target to eradicate leukemic cells.
Collapse
Affiliation(s)
- Karlijn Gijzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Yang L, Yang H, Rideout K, Cho T, Joo KI, Ziegler L, Elliot A, Walls A, Yu D, Baltimore D, Wang P. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 2008; 26:326-34. [PMID: 18297056 DOI: 10.1038/nbt1390] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 02/07/2008] [Indexed: 12/19/2022]
Abstract
We report a method of inducing antigen production in dendritic cells by in vivo targeting with lentiviral vectors that specifically bind to the dendritic cell-surface protein DC-SIGN. To target dendritic cells, we enveloped the lentivector with a viral glycoprotein from Sindbis virus engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced dendritic cells and induced dendritic cell maturation. A high frequency (up to 12%) of ovalbumin (OVA)-specific CD8(+) T cells and a significant antibody response were observed 2 weeks after injection of a targeted lentiviral vector encoding an OVA transgene into naive mice. This approach also protected against the growth of OVA-expressing E.G7 tumors and induced regression of established tumors. Thus, lentiviral vectors targeting dendritic cells provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens.
Collapse
Affiliation(s)
- Lili Yang
- Division of Biology, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Siva AC, Kirkland RE, Lin B, Maruyama T, McWhirter J, Yantiri-Wernimont F, Bowdish KS, Xin H. Selection of anti-cancer antibodies from combinatorial libraries by whole-cell panning and stringent subtraction with human blood cells. J Immunol Methods 2007; 330:109-19. [PMID: 18096183 DOI: 10.1016/j.jim.2007.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 01/13/2023]
Abstract
Traditional strategies for the identification of cell-surface cancer targets often fall short of their objective. For example, whole-cell panning of antibody libraries to isolate a diverse panel of antibodies directed against targets on cancer cells often identifies all immunogenic and/or abundant cell-surface antigens, not simply tumor-specific or tumor-associated antigens. Here we describe the use of stringent negative selection in combination with positive panning to increase tumor specificity and clinical relevance of selected antibodies. Sera from cancer cell-immunized mice showed strong binding to immunizing cancer cell lines but also cross-reacted strongly with human blood cells. Antisera blood cell binding was considerably decreased after stringent subtraction with human red blood cells (RBCs) and white blood cells (WBCs), yet cancer cell specificity was retained. In order to select for a higher percentage of clinically relevant antibodies for potential therapeutic use, stringent negative selection by RBC subtraction was employed in whole-cell panning of a disease-specific phage displayed antibody library on the prostate cancer cell line, PC-3. Isolated antibodies were found to bind to target antigens implicated in tumorigenicity and cancer cell migration and/or invasion, and included CD26, CDCP1, and the integrin complexes alpha2/beta1, alpha3/beta1, alpha5/beta1, and alpha6/beta4. Compared with traditional cell panning, this method considerably increased the selectivity of antibodies to tumor-associated antigens.
Collapse
Affiliation(s)
- Amara C Siva
- Alexion Antibody Technologies Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kretz-Rommel A, Qin F, Dakappagari N, Torensma R, Faas S, Wu D, Bowdish KS. In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother 2007; 30:715-26. [PMID: 17893564 DOI: 10.1097/cji.0b013e318135472c] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple cancer vaccine trials have been carried out using ex vivo generated autologous dendritic cells (DCs) loaded with tumor antigen before readministration into patients. Though promising, overall immunologic potency and clinical efficacy might be improved with more efficient DC-based therapies that avoid ex vivo manipulations, but are instead based on in vivo targeting of DCs. For initial in vivo proof of concept studies, we evaluated targeting of proteins or peptides to DCs through DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN). Because the biology of DC-SIGN is different between mice and humans, we assess human DC-SIGN targeting in the setting of elements of a human immune system in a mouse model. Administration of anti-DC-SIGN antibodies carrying either tetanus toxoid peptides or keyhole limpet hemocyanin (KLH) to Rag2gammaC mice reconstituted with human immune cells raised stimulatory human T-cell responses to the respective antigen without additional adjuvant requirements. Furthermore, administration of anti-DC-SIGN antibody-KLH conjugate enhanced the adjuvant properties of KLH resulting in inhibition of RAJI (Human Burkitt's Lymphoma Cell Line) cell tumor growth in Nonobese Diabetic/Severe Combined Immunodeficient mice transplanted with human immune cells. Thus, mouse models reconstituted with human immune cells seem to be suitable for evaluating DC-targeted vaccines, and furthermore, targeting to DCs in situ via DC-SIGN may provide a promising vaccine platform for inducing strong immune responses against cancer and infectious disease agents.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- CD40 Antigens/immunology
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cord Blood Stem Cell Transplantation
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Hemocyanins/immunology
- Humans
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/immunology
- Transplantation, Heterologous
Collapse
|
32
|
Tacken PJ, de Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790-802. [PMID: 17853902 DOI: 10.1038/nri2173] [Citation(s) in RCA: 578] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The realization that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs to create more effective vaccines. Early clinical trials exploring autologous DCs that were loaded with antigens ex vivo to induce T-cell responses have provided proof of principle. Here, we discuss how direct targeting of antigens to DC surface receptors in vivo might replace laborious and expensive ex vivo culturing, and facilitate large-scale application of DC-based vaccination therapies.
Collapse
Affiliation(s)
- Paul J Tacken
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumour Immunology, Postbox 9101, Nijmegen, 6500HB, Netherlands
| | | | | | | |
Collapse
|
33
|
Abstract
The C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is found on the surface of dendritic cells. It can mediate adhesion between dendritic cells and T lymphocytes and facilitate antigen capture and presentation. Many pathogens can exploit DC-SIGN binding for nefarious purposes. For example, DC-SIGN can facilitate the dissemination of viruses, like HIV-1. Alternatively, some microbes (e.g., Mycobacterium tuberculosis) use their ability to interact with DC-SIGN to evade immune detection. The diverse roles attributed to DC-SIGN provide impetus to identify ligands that can be used to explore its different functions. Such compounds also could serve as therapeutic leads. Most of the DC-SIGN ligands studied previously are mannose- or fucose-derived monosaccharides or oligosaccharides with inhibitory constants in the range of 0.1-10 mM. To identify monovalent ligands with more powerful DC-SIGN blocking properties, we devised a high-throughput fluorescence-based competition assay. This assay afforded potent non-carbohydrate, small molecule inhibitors (IC50 values of 1.6-10 microM). These compounds block not only DC-SIGN-carbohydrate interactions but also DC-SIGN-mediated cell adhesion. Thus, we anticipate that these non-carbohydrate inhibitors can be used to illuminate the role of DC-SIGN in pathogenesis and immune function.
Collapse
Affiliation(s)
- M. Jack Borrok
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
34
|
Thibault S, Tardif MR, Gilbert C, Tremblay MJ. Virus-associated host CD62L increases attachment of human immunodeficiency virus type 1 to endothelial cells and enhances trans infection of CD4+ T lymphocytes. J Gen Virol 2007; 88:2568-2573. [PMID: 17698668 DOI: 10.1099/vir.0.83032-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have identified several host-derived cell-surface proteins incorporated within emerging human immunodeficiency virus type 1 (HIV-1) particles. Some of these molecules play a role in different steps of the virus life cycle and are often advantageous for the virus. We report here that the leukocyte L-selectin (also called CD62L) remains functional when inserted within the envelope of HIV-1. Indeed, we demonstrate that adsorption of virions to endothelial cells is enhanced upon acquisition of host-derived CD62L. The more important binding of CD62L-bearing HIV-1 particles resulted in a more efficient virus transmission to CD4+ T lymphocytes. Capture and eventual transfer of such CD62L-bearing virions by the endothelium could play a role in the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Sandra Thibault
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | - Mélanie R Tardif
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | - Caroline Gilbert
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | - Michel J Tremblay
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
35
|
Abstract
The specificity and high affinity binding of antibodies provides these molecules with ideal properties for delivering a payload to target cells. This concept has been commercialized for cancer therapies using toxin- or radionucleotide-conjugated antibodies that are designed to selectively deliver cytotoxic molecules to cancer cells. Exploiting the same effective characteristics of antibodies, antibody-targeted vaccines (ATV) are designed to deliver disease-specific antigens to professional antigen-presenting cells (APCs), thus enabling the host's immune system to recognize and eliminate malignant or infected cells through adaptive immunity. The concept of ATVs has been in development for many years, and recently has entered clinical trials. Early studies with ATVs focused on the ability to induce humoral immunity in the absence of adjuvants. More recently, ATVs targeted to C-type lectin receptors have been exploited for induction of potent helper and cytolytic T-cell responses. To maximize their stimulatory capacity, the ATVs are being evaluated with a variety of adjuvants or other immunostimulatory agents. In the absence of co-administered immunostimulatory signals, APC-targeting can induce antigen-specific tolerance and, thus, may also be exploited in developing specific treatments for autoimmune and allergic diseases, or for preventing transplant rejection. The successful clinical application of this new class of antibody-based products will clearly depend on using appropriate combinations with other strategies that influence the immune system.
Collapse
Affiliation(s)
- T Keler
- Celldex Therapeutics Inc, Phillipsburg, NJ 08865, USA.
| | | | | | | |
Collapse
|
36
|
Meyer S, Tefsen B, Imberty A, Geyer R, van Die I. The C-type lectin L-SIGN differentially recognizes glycan antigens on egg glycosphingolipids and soluble egg glycoproteins from Schistosoma mansoni. Glycobiology 2007; 17:1104-19. [PMID: 17621595 PMCID: PMC7537643 DOI: 10.1093/glycob/cwm073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- Carbohydrate Sequence
- Cell Adhesion/immunology
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Crystallography, X-Ray
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Fucose/metabolism
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Glycoside Hydrolases/pharmacology
- Glycosphingolipids/immunology
- Glycosphingolipids/metabolism
- Glycosylation
- Humans
- K562 Cells
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Models, Molecular
- Molecular Sequence Data
- Ovum/immunology
- Polysaccharides/immunology
- Polysaccharides/metabolism
- Protein Conformation
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Schistosoma mansoni/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Anne Imberty
- Centre de Recherches sur les Macromolecules Végétales, CNRS (affiliated withUniversité Joseph Fourier), 38041 Grenoble, Cedex 09, France
| | - Rudolf Geyer
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- To whom correspondence should be addressed: Tel: +31-2-04-44-81-57; Fax: +31-2-04-44-81-44; e-mail:
| |
Collapse
|
37
|
Srinivas O, Larrieu P, Duverger E, Boccaccio C, Bousser MT, Monsigny M, Fonteneau JF, Jotereau F, Roche AC. Synthesis of glycocluster-tumor antigenic peptide conjugates for dendritic cell targeting. Bioconjug Chem 2007; 18:1547-54. [PMID: 17602511 DOI: 10.1021/bc070026g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.
Collapse
Affiliation(s)
- Oruganti Srinivas
- Glycobiologie, Vectorologie et Traffic Intracellulaire, Centre de Biophysique Moléculaire CNRS, Rue Charles-Sadron, 45071 Orléans, Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Antibodies to the C-type lectin, L-SIGN, as tentative therapeutic agents for induction of antigen-specific tolerance. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Proudfoot O, Apostolopoulos V, Pietersz GA. Receptor-Mediated Delivery of Antigens to Dendritic Cells: Anticancer Applications. Mol Pharm 2007; 4:58-72. [PMID: 17228857 DOI: 10.1021/mp0601087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, there has been a surge of interest in the use of ex vivo antigen-pulsed dendritic cells (DCs) in the immunotherapy for cancer. DCs are powerful adjuvants with the ability to prime naive CD4+ and CD8+ T cells. As antigen sources, various preparations, including peptides, proteins, crude tumor lysates, and DCs transfected or transformed with various viruses, have been used. These procedures that involve the isolation of patient DCs and reintroduction after in vitro manipulation are time-consuming and expensive. The DC populations used frequently in ex vivo clinical studies are IL-4 and GM-CSF cultured DCs that may not represent the in vivo DC populations. An attractive method of targeting in vivo DCs is to utilize various ligands or antibodies that bind discrete populations of DCs. These cell surface receptors will direct the antigen to different antigen processing pathways depending on the targeted receptor to induce cytotoxic T cell or T helper responses. This review will discuss the various approaches and receptors that have been used for antigen targeting that may eventually be translated to alternative DC-based immunotherapies.
Collapse
Affiliation(s)
- Owen Proudfoot
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute at Austin, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
40
|
Pöhlmann S, Tremblay MJ. Attachment of human immunodeficiency virus to cells and its inhibition. ENTRY INHIBITORS IN HIV THERAPY 2007. [PMCID: PMC7123856 DOI: 10.1007/978-3-7643-7783-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The entry of enveloped viruses involves virus adsorption followed by close apposition of the viral and plasma membranes. This multistep process is initiated by specific binding interactions between glycoproteins in the viral envelope and appropriate receptors on the cell surface. In the case of HIV-1, attachment of virions to the cell surface is attributed to a high affinity interaction between envelope spike glycoproteins (Env, composed of the surface protein gp120 and the transmembrane protein gp41) and a complex made of the primary CD4 receptor and a seven-transmembrane co-receptor (e.g., CXCR4 or CCR5) (reviewed in [1]). Then a chain of dynamic events take place that enable the viral nucleocapsid to penetrate within the target cell following the destabilization of membrane microenvironment and the formation of a fusion pore.
Collapse
|
41
|
Seeds RE, Gordon S, Miller JL. Receptors and ligands involved in viral induction of type I interferon production by plasmacytoid dendritic cells. Immunobiology 2006; 211:525-35. [PMID: 16920491 PMCID: PMC7132488 DOI: 10.1016/j.imbio.2006.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus infection is sensed by the innate immune system which then rapidly initiates biosynthesis of type I interferon (IFN). The IFN signaling systems produce a broadly effective innate antiviral response by creating an antiviral state in both an autocrine and paracrine manner in cells and by activating innate and adaptive immunity. Plasmacytoid dendritic cells (pDCs) have the unique ability to produce very high levels of type I IFN following viral infection in vivo. Most recent research has focused on oligonucleotide-mediated induction of type I IFN production, implicating viral genome and replication intermediates as the stimulus for this response. However there are additional viral ligands which can potentially induce type I IFN production in pDCs, such as envelope glycoproteins, viral glycolipids, tegument, capsid or nuclear proteins. This area of viral immunology, which has been neglected in the literature, will be discussed here.
Collapse
Affiliation(s)
- Rosalind E Seeds
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|