1
|
Fang J, Wang C, Shen C, Shan J, Wang X, Liu L, Fan Y. The Expression of CXCL10/CXCR3 and Effect of the Axis on the Function of T Lymphocyte Involved in Oral Lichen Planus. Inflammation 2018; 42:799-810. [PMID: 30467622 DOI: 10.1007/s10753-018-0934-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The etiology of oral lichen planus (OLP) is still not clear. The purpose of this study was to explore the role of CXC chemokine receptor 3(CXCR3) and its ligand CXC motif chemokine 10(CXCL10) in the pathogenesis of OLP. We examined the expression of CXCR3 and CXCL10 in OLP patients and healthy controls by quantitative real-time PCR, Western blotting, ELISAs, and immunohistochemistry, respectively. Moreover, we detected the effects of CXCL10/CXCR3 axis on T lymphocyte migration, proliferation and apoptosis by Transwell assays, CCK8 assays, and flow cytometry. We found that the expression of CXCR3 and CXCL10 was significantly increased in OLP patients. In addition, T lymphocyte migration rate of CXCL10 stimulation group was significantly higher than that of control and CXCR3 antagonist groups. After antagonizing CXCR3, the migration ability of T lymphocytes was significantly decreased, and regardless of whether CXCL10 was added in the upper chamber culture medium, the number of migrating cells was similar. The addition of CXCL10 stimulant could stimulate the proliferation of T lymphocytes, but there was no significant difference compared with control group. After antagonizing CXCR3, the proliferation rate of T lymphocytes was significantly reduced. However, there were no significant differences in the apoptosis rates of T lymphocytes between CXCL10 stimulation group, antagonist CXCR3 group, and control group. Due to the change of expression in CXCR3 and CXCL10, and its interaction in mediating the directional migration of peripheral blood T lymphocytes, affecting the proliferation of T lymphocytes, it suggests that CXCL10/CXCR3 axis may be related to the immune mechanism of OLP.
Collapse
Affiliation(s)
- Jiaxiang Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Chen Shen
- Department of Special outpatient service, Hangzhou West Dental Hospital, Hangzhou, 310012, China
| | - Jing Shan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Xuewei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
2
|
The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2013; 11:25-40. [PMID: 23954947 DOI: 10.1038/cmi.2013.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.
Collapse
|
3
|
Functional Investigation of Fas Ligand Expressions in Human Non-Small Cell Lung Cancer Cells and Its Clinical Implications. Ann Thorac Surg 2013; 95:412-8. [DOI: 10.1016/j.athoracsur.2012.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
|
4
|
Moorman JP, Wang JM, Zhang Y, Ji XJ, Ma CJ, Wu XY, Jia ZS, Wang KS, Yao ZQ. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:755-66. [PMID: 22706088 PMCID: PMC3392408 DOI: 10.4049/jimmunol.1200162] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) is remarkable at disrupting human immunity to establish chronic infection. Upregulation of inhibitory signaling pathways (such as T cell Ig and mucin domain protein-3 [Tim-3]) and accumulation of regulatory T cells (Tregs) play pivotal roles in suppressing antiviral effector T cell (Teff) responses that are essential for viral clearance. Although the Tim-3 pathway has been shown to negatively regulate Teffs, its role in regulating Foxp3(+) Tregs is poorly explored. In this study, we investigated whether and how the Tim-3 pathway alters Foxp3(+) Treg development and function in patients with chronic HCV infection. We found that Tim-3 was upregulated, not only on IL-2-producing CD4(+)CD25(+)Foxp3(-) Teffs, but also on CD4(+)CD25(+)Foxp3(+) Tregs, which accumulate in the peripheral blood of chronically HCV-infected individuals when compared with healthy subjects. Tim-3 expression on Foxp3(+) Tregs positively correlated with expression of the proliferation marker Ki67 on Tregs, but it was inversely associated with proliferation of IL-2-producing Teffs. Moreover, Foxp3(+) Tregs were found to be more resistant to, and Foxp3(-) Teffs more sensitive to, TCR activation-induced cell apoptosis, which was reversible by blocking Tim-3 signaling. Consistent with its role in T cell proliferation and apoptosis, blockade of Tim-3 on CD4(+)CD25(+) T cells promoted expansion of Teffs more substantially than Tregs through improving STAT-5 signaling, thus correcting the imbalance of Foxp3(+) Tregs/Foxp3(-) Teffs that was induced by HCV infection. Taken together, the Tim-3 pathway appears to control Treg and Teff balance through altering cell proliferation and apoptosis during HCV infection.
Collapse
Affiliation(s)
- Jonathan P. Moorman
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United State of America
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Jia M. Wang
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Ying Zhang
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiao J. Ji
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
- Department of Critical Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng J. Ma
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Xiao Y. Wu
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Zhan S. Jia
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ke S. Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United State of America
| | - Zhi Q. Yao
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United State of America
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United State of America
| |
Collapse
|
5
|
The CXCR3(+)CD56Bright phenotype characterizes a distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. PLoS One 2012; 7:e38846. [PMID: 22792160 PMCID: PMC3390318 DOI: 10.1371/journal.pone.0038846] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/11/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In mouse models, natural killer (NK) cells have been shown to exert anti-fibrotic activity via killing of activated hepatic stellate cells (HSC). Chemokines and chemokine receptors critically modulate hepatic recruitment of NK cells. In hepatitis C, the chemokine receptor CXCR3 and its ligands have been shown to be associated with stage of fibrosis suggesting a role of these chemokines in HCV associated liver damage by yet incompletely understood mechanisms. Here, we analyzed phenotype and function of CXCR3 expressing NK cells in chronic hepatitis C. METHODS Circulating NK cells from HCV-infected patients (n = 57) and healthy controls (n = 27) were analyzed with respect to CXCR3 and co-expression of different maturation markers. Degranulation and interferon-γ secretion of CXCR3(+) and CXCR3(-) NK cell subsets were studied after co-incubation with primary human hepatic stellate cells (HSC). In addition, intra-hepatic frequency of CXCR3(+) NK cells was correlated with stage of liver fibrosis (n = 15). RESULTS We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. In healthy controls CXCR3(+)CD56Bright NK cells displayed strongest activity against HSC. Chronic hepatitis C was associated with a significantly increased frequency of CXCR3(+)CD56Bright NK cells which showed impaired degranulation and impaired IFN-γ secretion in response to HSC. Of note, we observed intra-hepatic accumulation of this NK cell subset in advanced stages of liver fibrosis. CONCLUSION We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. Intra-hepatic accumulation of the functionally impaired CXCR3(+)CD56Bright NK cell subset might be involved in HCV-induced liver fibrosis.
Collapse
|
6
|
The role of CXCR3 in the induction of primary biliary cirrhosis. Clin Dev Immunol 2011; 2011:564062. [PMID: 21647407 PMCID: PMC3102447 DOI: 10.1155/2011/564062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/09/2011] [Accepted: 02/24/2011] [Indexed: 12/16/2022]
Abstract
Objective. Investigate whether CXCR3 and its ligands were involved in the pathogenesis of primary biliary cirrhosis (PBC) in an autoimmune cholangitis animal model. Methods. Female C57BL/6 mice were injected with 5 mg/kg of poly I:C intraperitoneally twice a week for 24 weeks. PBC model was confirmed by liver function, serum autoantibodies and liver biopsy. Lymphocytes subsets in liver and spleen and CXCL10 serum level were tested by flow cytometry and ELISA. Liver specimens were collected to evaluate the differences in pathology between WT and CXCR3−/− mice. Results. Antimitochondrial antibody was detected in all PBC model. Numbers of infiltrates were detected in the portal areas 8 weeks after poly I:C injection, which progressed up to 24 weeks. Compared to control mice, CXCL10 serum level increased in PBC mice and the proportion of CXCR3+ cells increased in the intrahepatic infiltrates of PBC mice, chiefly on CD8+ cells, whereas the expression of CXCR3 on CD3+ and CD8+ splenocytes decreased in PBC model. Compared with WT mice, CXCR3−/− mice developed delayed and milder progression of cellular inflammation. Conculsions. CXCR3 might contribute to the development of PBC in murine model. Knockout of CXCR3 might delay and alleviate the PBC disease progression, but could not entirely block the disease development.
Collapse
|
7
|
Naas T, Ghorbani M, Soare C, Scherling N, Muller R, Ghorbani P, Diaz-Mitoma F. Adoptive transfer of splenocytes to study cell-mediated immune responses in hepatitis C infection using HCV transgenic mice. COMPARATIVE HEPATOLOGY 2010; 9:7. [PMID: 20727132 PMCID: PMC2936292 DOI: 10.1186/1476-5926-9-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 08/20/2010] [Indexed: 01/12/2023]
Abstract
Background Hepatitis C virus (HCV) is a major cause of chronic hepatitis and a health problem affecting over 170 million people around the world. We previously studied transgenic mice that express HCV Core, Envelope 1 and Envelope 2 proteins predominantly in the liver, resulting in steatosis, liver and lymphoid tumors, and hepatocellular carcinoma. Herein, the immune-mediated cell response to hepatitis C antigens was evaluated by adoptive transfers of carboxyfluorescein succinimidyl ester (CFSE) labelled splenocytes from HCV immunized mice into HCV transgenic mice. Results In comparison to non-transgenic mice, there was a significant decrease in the percentage of CFSE-labeled CD4+ and CD8+ T cells in transgenic mouse peripheral blood receiving adoptive transfers from immunized donors. Moreover, the percentage of CFSE-labeled CD4+ and CD8+ T cells were significantly higher in the spleen of transgenic and non-transgenic mice when they received splenocytes from non-immunized than from immunized mice. On the other hand, the percentages of CD4+ and CD8+ T cells in the non-transgenic recipient mouse lymph nodes were significantly higher than the transgenic mice when they received the adoptive transfer from immunized donors. Interestingly, livers of transgenic mice that received transfers from immunized mice had a significantly higher percentage of CFSE labeled T cells than livers of non-transgenic mice receiving non-immunized transfers. Conclusions These results suggest that the T cells from HCV immunized mice recognize the HCV proteins in the liver of the transgenic mouse model and homed to the HCV antigen expression sites. We propose using this model system to study active T cell responses in HCV infection.
Collapse
Affiliation(s)
- Turaya Naas
- Infectious Disease and Vaccine Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Chemokines direct leukocyte trafficking and positioning within tissues, thus playing critical roles in regulating immune responses and inflammation. The chemokine system is complex, involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low-flow environment through which leukocytes are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum, fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure; at the other end, diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is characterized by a T lymphocyte-rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells, and more recently Th17 and Th9 cells, which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favor of resolution rather than injury.
Collapse
Affiliation(s)
| | | | - David H. Adams
- *Prof. David H. Adams, MD, FRCP, FmedSci, 5th Floor, Institute of Biomedical Research, University of Birmingham Medical School, Wolfson Drive, Edgbaston, Birmingham B15 2TT (UK), Tel. +44 121 415 8702, Fax +44 121 415 8701, E-Mail
| |
Collapse
|
9
|
Abstract
Hepatits C virus (HCV) is an enveloped virus with positive-sense single-stranded RNA genome that causes both acute and persistent infections associated with chronic hepatitis, cirrhosis and hepatocellular carcinoma, which needs fully functional human hepatocytes for its development. Due to the strict human tropism of HCV, only human and higher primates such as chimpanzees have been receptive to HCV infection and development, cognition about pathophysiololgy and host immune responses of HCV infection is limited by lacking of simple laboratory models of infection for a long time. During the past decade, gene transfer approaches have been helpful to the understanding of the molecular basis of human disease. Transgenic cell lines, chimeric and transgenic animal models were developed and had been demonstrated their invaluable benefits. This review focuses on the existing HCV transgenic models and summarize the relative results about probable pathophysical changes induced by HCV proteins.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | | | | |
Collapse
|
10
|
Wainwright DA, Xin J, Mesnard NA, Politis CM, Sanders VM, Jones KJ. Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice. J Neuroimmunol 2009; 216:66-75. [PMID: 19818514 DOI: 10.1016/j.jneuroim.2009.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
We have previously demonstrated a neuroprotective mechanism of facial motoneuron (FMN) survival after facial nerve axotomy that is dependent on CD4(+) Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS resident microglia. To investigate this mechanism, we chose to study the Th2-associated chemokine, CCL11, and Th1-associated chemokine, CXCL11, in wild-type and presymptomatic mSOD1 mice after facial nerve axotomy. In this report, the results indicate that CCL11 is constitutively expressed in the uninjured facial motor nucleus, but CXCL11 is not expressed at all. Facial nerve axotomy induced a shift in CCL11 expression from FMN to astrocytes, whereas CXCL11 was induced in FMN. Differences in the number of CCL11- and CXCL11-expressing cells were observed between WT and mSOD1 mice after facial nerve axotomy.
Collapse
Affiliation(s)
- Derek A Wainwright
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 2009; 34:45-54. [PMID: 19744827 DOI: 10.1016/j.jaut.2009.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/29/2009] [Indexed: 12/13/2022]
Abstract
Chemokines direct leukocyte trafficking and positioning within tissues. They thus play critical roles in regulating immune responses and inflammation. The chemokine system is complex involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low flow environment through which leukocyte are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure at the other diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is charactezised by a T lymphocyte rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells and more recently Th17 and Th9 cells which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favour of resolution rather than injury.
Collapse
Affiliation(s)
- Ye H Oo
- Centre for Liver Research, 5th Floor, Institute of Biomedical Research, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
12
|
Perney P, Turriere C, Portalès P, Rigole H, Psomas C, Blanc F, Clot J, Corbeau P. CXCR3 expression on peripheral CD4+ T cells as a predictive marker of response to treatment in chronic hepatitis C. Clin Immunol 2009; 132:55-62. [DOI: 10.1016/j.clim.2009.03.521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 03/13/2009] [Indexed: 01/16/2023]
|
13
|
Abstract
Chronic infection with the hepatitis C virus, a noncytopathic hepatotropic RNA virus, affects over 170 million people worldwide. In the majority of cases, neither the early innate immune response nor the later adaptive immune response succeeds in clearing the virus, and the infection becomes chronic. Furthermore, in many patients, the ineffective inflammatory response drives fibrogenesis and the development of cirrhosis. It is critical to understand this immune pathology if preventative and curative therapies are to be developed. Chemokines are a superfamily of small proteins that promote leukocyte migration and orchestrate the immune response to viruses, including hepatitis C virus. Chemokines are crucial for viral elimination, but inappropriate persistence of expression in chronic hepatitis C infection can drive tissue damage and inflammation. Here we review the role of chemokines and their receptors in hepatitis C virus infection.
Collapse
Affiliation(s)
- Mathis Heydtmann
- NIHR Biomedical Research Unit for Liver Disease, MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
14
|
Miao JF, Zhu YM, Gu BB, Wang XB, Zou SX, Deng YE. Evaluation of the changes of immune cells during lipopolysaccharide-induced mastitis in rats. Cytokine 2007; 40:135-43. [PMID: 17967544 DOI: 10.1016/j.cyto.2007.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate in rats, changes in peripheral blood immune cells and mammary tissue after an intramammary infusion of lipopolysaccharide (LPS). The results of the study showed that infusion of LPS induced a rapid migration of neutrophils (PMNs) from the blood to mammary alveoli, increased the activity of myeloperoxidase (MPO) and the concentration of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) in mammary tissues, decreased the activity of myeloperoxidase in serum and reduced the CD4+/CD8+ ratio. This is the first report of changes in peripheral blood immune cells and mammary tissue in rat mastitis.
Collapse
Affiliation(s)
- Jin-Feng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). In man, the pathobiological changes associated with HCV infection have been attributed to both the immune system and direct viral cytopathic effects. Until now, the lack of simple culture systems to infect and propagate the virus has hampered progress in understanding the viral life cycle and pathogenesis of HCV infection, including the molecular mechanisms implicated in HCV-induced HCC. This clearly demonstrates the need to develop small animal models for the study of HCV-associated pathogenesis. This review describes and discusses the development of new HCV animal models to study viral infection and investigate the direct effects of viral protein expression on liver disease.
Collapse
Affiliation(s)
- Dina Kremsdorf
- INSERM U812, Universite Paris Descartes, CHU Necker, 156, rue de Vaugirard, Paris 75015, France.
| | | |
Collapse
|