1
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
2
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Calligaris M, Zito G, Busà R, Bulati M, Iannolo G, Gallo A, Carreca AP, Cuscino N, Castelbuono S, Carcione C, Centi C, Amico G, Bertani A, Chinnici CM, Conaldi PG, Scilabra SD, Miceli V. Proteomic analysis and functional validation reveal distinct therapeutic capabilities related to priming of mesenchymal stromal/stem cells with IFN-γ and hypoxia: potential implications for their clinical use. Front Cell Dev Biol 2024; 12:1385712. [PMID: 38882056 PMCID: PMC11179434 DOI: 10.3389/fcell.2024.1385712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a heterogeneous population of multipotent cells that can be obtained from various tissues, such as dental pulp, adipose tissue, bone marrow and placenta. MSCs have gained importance in the field of regenerative medicine because of their promising role in cell therapy and their regulatory abilities in tissue repair and regeneration. However, a better characterization of these cells and their products is necessary to further potentiate their clinical application. In this study, we used unbiased high-resolution mass spectrometry-based proteomic analysis to investigate the impact of distinct priming strategies, such as hypoxia and IFN-γ treatment, on the composition and therapeutic functionality of the secretome produced by MSCs derived from the amniotic membrane of the human placenta (hAMSCs). Our investigation revealed that both types of priming improved the therapeutic efficacy of hAMSCs, and these improvements were related to the secretion of functional factors present in the conditioned medium (CM) and exosomes (EXOs), which play crucial roles in mediating the paracrine effects of MSCs. In particular, hypoxia was able to induce a pro-angiogenic, innate immune response-activating, and tissue-regenerative hAMSC phenotype, as highlighted by the elevated production of regulatory factors such as VEGFA, PDGFRB, ANGPTL4, ENG, GRO-γ, IL8, and GRO-α. IFN-γ priming, instead, led to an immunosuppressive profile in hAMSCs, as indicated by increased levels of TGFB1, ANXA1, THBS1, HOMER2, GRN, TOLLIP and MCP-1. Functional assays validated the increased angiogenic properties of hypoxic hAMSCs and the enhanced immunosuppressive activity of IFN-γ-treated hAMSCs. This study extends beyond the direct priming effects on hAMSCs, demonstrating that hypoxia and IFN-γ can influence the functional characteristics of hAMSC-derived secretomes, which, in turn, orchestrate the production of functional factors by peripheral blood cells. This research provides valuable insights into the optimization of MSC-based therapies by systematically assessing and comparing the priming type-specific functional features of hAMSCs. These findings highlight new strategies for enhancing the therapeutic efficacy of MSCs, particularly in the context of multifactorial diseases, paving the way for the use of hAMSC-derived products in clinical practice.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Rosalia Busà
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Cinzia Maria Chinnici
- Regenerative Medicine and Immunotherapy Area, Ri.MED Foundation c/o IRCCS ISMETT, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | | | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| |
Collapse
|
4
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
5
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
7
|
Bu F, Huang S, Yang X, Wei L, Zhang D, Zhang Z, Tian D. Damage-induced NAD release activates intestinal CD4+ and CD8+ T cell via P2X7R signaling. Cell Immunol 2023; 385:104677. [PMID: 36746070 DOI: 10.1016/j.cellimm.2023.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is characterized by the activation of inflammation triggered by tissue damage. Damage-associated molecular patterns (DAMPs) reportedly induce local inflammation after injury. However, the impact of DAMPs on intestinal resident lymphocytes during POI remains poorly elucidated. METHODS POI in mice was induced via intestinal manipulation (IM). The concentration of nicotinamide adenine dinucleotide (NAD) was detected after IM. The gastrointestinal motility of the mice was assessed after IM or NAD injection. Cytokine production and calcium influx in T cells were investigated after NAD stimulation using flow cytometry. RESULTS The concentration of extracellular NAD significantly increased after IM administration, and NAD directly impaired gastrointestinal motility. Intraperitoneal injection of NAD promoted the expression of TNF-α in intestinal CD8+ and CD4+ T cells, but only IFN-γ production by CD8+ T cells was significantly promoted by NAD injection. Granzyme B production in CD8+ and CD4+ T cells decreased after administration. Concordantly, the same results were observed in NAD stimulation of intestinal CD3+ T cells in vitro. Blocking the P2X7R-related membrane enzyme ART2.2 significantly diminished the pro-inflammatory effect of NAD. CONCLUSION IM includes the release of NAD derived from damaged tissues, consequently promoting pro-inflammatory cytokine production in intestinal CD4+ and CD8+ T lymphocytes. NAD-induced intestinal T cells activation may be associated with POI progression in the mouse.
Collapse
Affiliation(s)
- Fandi Bu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyang Huang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Dan Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
8
|
P2X7-dependent immune pathways in retinal diseases. Neuropharmacology 2023; 223:109332. [PMID: 36372269 DOI: 10.1016/j.neuropharm.2022.109332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Adenosine triphosphate (ATP) is a signalling molecule acting as a neurotransmitter but also as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentration of ATP released by damaged cells. In the eye, P2X7 is expressed by resident microglia and immune cells that infiltrate the retina in disease such as age-related macular degeneration (AMD), a degenerative retinal disease, and uveitis, an inflammatory eye disease. Activation of P2X7 is involved in several physiological and pathological processes: phagocytosis, activation of the inflammasome NLRP3, release of pro-inflammatory mediators and cell death. The aim of this review is to discuss the potential involvement of P2X7 in the development of AMD and uveitis.
Collapse
|
9
|
Gómez-Pinedo U, Torre-Fuentes L, Matías-Guiu JA, Pytel V, Ojeda-Hernández DD, Selma-Calvo B, Montero-Escribano P, Vidorreta-Ballesteros L, Matías-Guiu J. Exonic variants of the P2RX7 gene in familial multiple sclerosis. Neurologia 2022:S2173-5808(22)00189-4. [PMID: 36470550 DOI: 10.1016/j.nrleng.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Several studies have analysed the presence of P2RX7 variants in patients with MS, reporting diverging results. METHODS Our study analyses P2RX7 variants detected through whole-exome sequencing (WES). RESULTS We analysed P2RX7, P2RX4, and CAMKK2 gene variants detected by whole-exome sequencing in all living members (n = 127) of 21 families including at least 2 individuals with multiple sclerosis. P2RX7 gene polymorphisms previously associated with autoimmune disease. Although no differences were observed between individuals with and without multiple sclerosis, we found greater polymorphism of gain-of-function variants of P2RX7 in families with individuals with multiple sclerosis than in the general population. Copresence of gain-of-function and loss-of-function variants was not observed to reduce the risk of presenting the disease. Three families displayed heterozygous gain-of-function SNPs in patients with multiple sclerosis but not in healthy individuals. We were unable to determine the impact of copresence of P2RX4 and CAMKK2 variants with P2RX7 variants, or the potential effect of the different haplotypes described in the gene. No clinical correlations with other autoimmune diseases were observed in our cohort. CONCLUSIONS Our results support the hypothesis that the disease is polygenic and point to a previously unknown mechanism of genetic predisposition to familial forms of multiple sclerosis. P2RX7 gene activity can be modified, which suggests the possibility of preventive pharmacological treatments for families including patients with familial multiple sclerosis.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D D Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Mellouk A, Hutteau-Hamel T, Legrand J, Safya H, Benbijja M, Mercier-Nomé F, Benihoud K, Kanellopoulos JM, Bobé P. P2X7 purinergic receptor plays a critical role in maintaining T-cell homeostasis and preventing lupus pathogenesis. Front Immunol 2022; 13:957008. [PMID: 36248812 PMCID: PMC9556828 DOI: 10.3389/fimmu.2022.957008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Faslpr mutation and MRL genetic background. Thus, the Faslpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4–CD8– double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.
Collapse
Affiliation(s)
- Amine Mellouk
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | | | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Hanaa Safya
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Françoise Mercier-Nomé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Plateforme d’Histologie Immunopathologie de Clamart, IPSIT, INSERM, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Karim Benihoud
- UMR 9018, Institut Gustave Roussy, CNRS, Université Paris-Saclay, Villejuif, France
| | - Jean M. Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Bobé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
- *Correspondence: Pierre Bobé,
| |
Collapse
|
11
|
Prendecki M, McAdoo SP, Turner‐Stokes T, Garcia‐Diaz A, Orriss I, Woollard KJ, Behmoaras J, Cook HT, Unwin R, Pusey CD, Aitman TJ, Tam FWK. Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways. J Pathol 2022; 257:300-313. [PMID: 35239186 PMCID: PMC9322550 DOI: 10.1002/path.5890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Tabitha Turner‐Stokes
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Ana Garcia‐Diaz
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Isabel Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Present address:
Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke‐NUS Medical School SingaporeSingapore
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Robert Unwin
- Department of Renal Medicine, Division of MedicineUniversity College LondonLondonUK,Present address:
Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Timothy J Aitman
- Centre for Genomic & Experimental MedicineInstitute of Genetics and Molecular Medicine, University of EdinburghEdinburghUK
| | - Frederick WK Tam
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
12
|
Yang Y, Story ME, Hao X, Sumpter TL, Mathers AR. P2X7 Receptor Expression and Signaling on Dendritic Cells and CD4 + T Cells is Not Required but Can Enhance Th17 Differentiation. Front Cell Dev Biol 2022; 10:687659. [PMID: 35350380 PMCID: PMC8957928 DOI: 10.3389/fcell.2022.687659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The purinergic receptor P2X7 (P2X7R) is important in inflammasome activation and generally considered to favor proinflammatory immune responses. However, there is still a limited understanding of the role of P2X7R signaling in Th cell differentiation, particularly, Th17 differentiation. Herein, the impact of P2X7R signaling on primary Th17 and Th1 cell responses was examined when P2X7R was expressed specifically on dendritic cells (DCs) and CD4+ T cells. Surprisingly, global genetic ablation and pharmacological inhibition of the P2X7R did not affect the generation of Th17 and Th1 development in response to immunization with Complete Freund's Adjuvant and the model antigens, keyhole limpet hemocyanin or OVA. However, in-depth in vitro and in vivo investigations revealed differences in the balance of Th1/Th17 differentiation when P2X7R blockade was restricted to either DCs or CD4+ T cells. In this regard, in vitro DCs treated with a P2X7R agonist released more IL-6 and IL-1β and induced a more robust Th17 response in mixed leukocyte reactions when compared to controls. To test the hypothesis that P2X7R signaling specifically in DCs enhances Th17 responses in vivo, DC-specific P2X7R deficient chimeras were immunized with CFA and OVA. In this model, the P2X7R expression on DCs decreased the Th1 response without impacting Th17 responses. Following an assessment of CD4+ T cell P2X7R signaling, it was determined that in vitro P2X7R sufficient T cells develop an increased Th17 and suppressed Th1 differentiation profile. In vivo, P2X7R expression on CD4+ T cells had no effect on Th17 differentiation but likewise significantly suppressed the Th1 response, thereby skewing the immune balance. Interestingly, it appears that WT OT-II Th1 cells are more sensitive to P2X7R-induced cell death as evidence by a decrease in cell number and an increase in T cell death. Overall, these studies indicate that in vitro P2X7R signaling does enhances Th17 responses, which suggests that compensatory Th17 differentiation mechanisms are utilized in vivo in the absence of P2X7R signaling.
Collapse
Affiliation(s)
- Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Hamoudi C, Zhao C, Abderrazak A, Salem M, Fortin PR, Sévigny J, Aoudjit F. The Purinergic Receptor P2X4 Promotes Th17 Activation and the Development of Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1115-1127. [PMID: 35165166 DOI: 10.4049/jimmunol.2100550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/24/2023]
Abstract
Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Chenqi Zhao
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Amna Abderrazak
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Mabrouka Salem
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Paul R Fortin
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jean Sévigny
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada; .,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
14
|
Sidoryk-Węgrzynowicz M, Strużyńska L. Astroglial and Microglial Purinergic P2X7 Receptor as a Major Contributor to Neuroinflammation during the Course of Multiple Sclerosis. Int J Mol Sci 2021; 22:8404. [PMID: 34445109 PMCID: PMC8395107 DOI: 10.3390/ijms22168404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system that leads to the progressive disability of patients. A characteristic feature of the disease is the presence of focal demyelinating lesions accompanied by an inflammatory reaction. Interactions between autoreactive immune cells and glia cells are considered as a central mechanism underlying the pathology of MS. A glia-mediated inflammatory reaction followed by overproduction of free radicals and generation of glutamate-induced excitotoxicity promotes oligodendrocyte injury, contributing to demyelination and subsequent neurodegeneration. Activation of purinergic signaling, in particular P2X7 receptor-mediated signaling, in astrocytes and microglia is an important causative factor in these pathological processes. This review discusses the role of astroglial and microglial cells, and in particular glial P2X7 receptors, in inducing MS-related neuroinflammatory events, highlighting the importance of P2X7R-mediated molecular pathways in MS pathology and identifying these receptors as a potential therapeutic target.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, Ulrich H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front Cell Neurosci 2021; 15:662935. [PMID: 34122013 PMCID: PMC8187565 DOI: 10.3389/fncel.2021.662935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson's and Alzheimer's disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
Collapse
Affiliation(s)
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Lombardi M, Gabrielli M, Adinolfi E, Verderio C. Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Front Pharmacol 2021; 12:654023. [PMID: 33790800 PMCID: PMC8006391 DOI: 10.3389/fphar.2021.654023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It acts as danger signal that promotes inflammation by activating both P2X and P2Y purinergic receptors expressed in immune cells, including microglia, and tumor cells. One of the most important receptors implicated in ATP-induced inflammation is P2X7 receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are membrane structures released by all cells, which contain a selection of donor cell components, including proteins, lipids, RNA and ATP itself, and are able to transfer these molecules to target cells. ATP stimulation not only promotes EV production from microglia but also influences EV composition and signaling to the environment. In the present review, we will discuss the current knowledge on the role of ATP in the biogenesis and dynamics of EVs, which exert important functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Marta Lombardi
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Gabrielli
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Research Labs-University Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
17
|
Calzaferri F, Narros-Fernández P, de Pascual R, de Diego AMG, Nicke A, Egea J, García AG, de Los Ríos C. Synthesis and Pharmacological Evaluation of Novel Non-nucleotide Purine Derivatives as P2X7 Antagonists for the Treatment of Neuroinflammation. J Med Chem 2021; 64:2272-2290. [PMID: 33560845 DOI: 10.1021/acs.jmedchem.0c02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1β release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Ricardo de Pascual
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Antonio M G de Diego
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Javier Egea
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| |
Collapse
|
18
|
Demeules M, Scarpitta A, Abad C, Gondé H, Hardet R, Pinto-Espinoza C, Eichhoff AM, Schäfer W, Haag F, Koch-Nolte F, Adriouch S. Evaluation of P2X7 Receptor Function in Tumor Contexts Using rAAV Vector and Nanobodies (AAVnano). Front Oncol 2020; 10:1699. [PMID: 33042812 PMCID: PMC7518291 DOI: 10.3389/fonc.2020.01699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. Extracellular ATP is known to signal through plasma membrane receptors of the P2Y and P2X families. Among the P2X receptors, P2X7 has attracted increasing interest in the field of inflammation as well as in cancer. P2X7 is expressed by immune cells and by most malignant tumor cells where it plays a crucial yet complex role that remains to be clarified. P2X7 activity has been associated with production and release of pro-inflammatory cytokines, modulation of the activity and survival of immune cells, and the stimulation of proliferation and migratory properties of tumor cells. Hence, P2X7 plays an intricate role in the tumor microenvironment combining beneficial and detrimental effects that need to be further investigated. For this, we developed a novel methodology termed AAVnano based on the use of Adeno-associated viral vectors (AAV) encoding nanobodies targeting P2X7. We discuss here the advantages of this tool to study the different functions of P2X7 in cancer and other pathophysiological contexts.
Collapse
Affiliation(s)
- Mélanie Demeules
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Allan Scarpitta
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Catalina Abad
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Henri Gondé
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Romain Hardet
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | | | - Anna Marei Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| |
Collapse
|
19
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
20
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Bernal-Chico A, Manterola A, Cipriani R, Katona I, Matute C, Mato S. P2x7 receptors control demyelination and inflammation in the cuprizone model. Brain Behav Immun Health 2020; 4:100062. [DOI: 10.1016/j.bbih.2020.100062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
|
22
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Drohomyrecky PC, Doroshenko ER, Akkermann R, Moshkova M, Yi TJ, Zhao FL, Ahn JJ, McGaha TL, Pahan K, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Acts within Peripheral Myeloid Cells to Limit Th Cell Priming during Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:2588-2601. [PMID: 31578267 DOI: 10.4049/jimmunol.1801200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-δ is a fatty acid-activated transcription factor that regulates metabolic homeostasis, cell growth, and differentiation. Previously, we reported that mice with a global deficiency of PPAR-δ develop an exacerbated course of experimental autoimmune encephalomyelitis (EAE), highlighting a role for this nuclear receptor in limiting the development of CNS inflammation. However, the cell-specific contribution of PPAR-δ to the more severe CNS inflammatory response remained unclear. In this study, we studied the specific involvement of PPAR-δ in myeloid cells during EAE using mice that had Cre-mediated excision of floxed Ppard driven by the lysozyme M (LysM) promoter (LysM Cre :Ppard fl/fl). We observed that LysM Cre :Ppard fl/fl mice were more susceptible to EAE and developed a more severe course of this disease compared with Ppard fl/fl controls. The more severe EAE in LysM Cre :Ppard fl/fl mice was associated with an increased accumulation of pathogenic CD4+ T cells in the CNS and enhanced myelin-specific Th1 and Th17 responses in the periphery. Adoptive transfer EAE studies linked this EAE phenotype in LysM Cre :Ppard fl/fl mice to heightened Th responses. Furthermore, studies using an in vitro CD11b+ cell:Th cell coculture system revealed that CD11b+CD11c+ dendritic cells (DC) from LysM Cre :Ppard fl/fl mice had a heightened capacity to prime myelin oligodendrocyte glycoprotein (MOG)-specific Th cells compared with Ppard fl/fl counterparts; the effects of DC on Th1 cytokine production were mediated through production of the IL-12p40 homodimer. These studies revealed a role for PPAR-δ in DC in limiting Th cell priming during EAE.
Collapse
Affiliation(s)
| | | | - Rainer Akkermann
- Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Marina Moshkova
- Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Fei L Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeeyoon Jennifer Ahn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; and.,Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| |
Collapse
|
26
|
Kanellopoulos JM, Delarasse C. Pleiotropic Roles of P2X7 in the Central Nervous System. Front Cell Neurosci 2019; 13:401. [PMID: 31551714 PMCID: PMC6738027 DOI: 10.3389/fncel.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The purinergic receptor P2X7 is expressed in neural and immune cells known to be involved in neurological diseases. Its ligand, ATP, is a signaling molecule that can act as a neurotransmitter in physiological conditions or as a danger signal when released in high amount by damaged/dying cells or activated glial cells. Thus, ATP is a danger-associated molecular pattern. Binding of ATP by P2X7 leads to the activation of different biochemical pathways, depending on the physiological or pathological environment. The aim of this review is to discuss various functions of P2X7 in the immune and central nervous systems. We present evidence that P2X7 may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies: epilepsy, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, age-related macular degeneration and cerebral artery occlusion.
Collapse
Affiliation(s)
| | - Cécile Delarasse
- Inserm, Sorbonne Université, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
27
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
28
|
Domercq M, Matute C. Targeting P2X4 and P2X7 receptors in multiple sclerosis. Curr Opin Pharmacol 2019; 47:119-125. [PMID: 31015145 DOI: 10.1016/j.coph.2019.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. However, spontaneous myelin repair can occur during the course of the disease. A major component of this regenerative process is a robust innate immune response consisting of infiltrating macrophages and brain microgliosis. Therefore, specifically targeting myeloid cells could be an attractive therapeutic approach. Purinergic receptors control not only immune cell function together with the activation of microglia and astrocytes, but also neuronal and oligodendroglial survival in the pathology. Thus, targeting these receptors can modulate a whole variety of responses. In this review, we will summarize recent findings highlighting the potential of P2X4 and P2X7 as therapeutic targets for MS.
Collapse
Affiliation(s)
- María Domercq
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHU, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - C Matute
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHU, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain.
| |
Collapse
|
29
|
Guerra Martinez C. P2X7 receptor in cardiovascular disease: The heart side. Clin Exp Pharmacol Physiol 2019; 46:513-526. [PMID: 30834550 DOI: 10.1111/1440-1681.13079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/10/2023]
Abstract
The P2X7 receptor is a ligand-gated purinergic receptor activated by extracellular ATP. The receptor is highly expressed in immune cells and in the brain, and, upon activation, the P2X7 receptor allows a cation flux, leading to the distinct activation of intracellular signalling pathways as the secretion of pro-inflammatory cytokines, and modulation of cell survival. Through these molecular mechanisms, P2X7 is known to play important roles in physiology and pathophysiology of a wide spectrum of diseases, including cancer, inflammatory diseases, neurological, respiratory and more recently cardiovascular diseases. Recent studies demonstrated that the P2X7 could modulate the assembly of the NLRP3 inflammasome, leading to the secretion of pro-inflammatory factors and worsen the cardiac disease phenotypes. This review discusses the critical molecular function of P2X7 in the modulation of the onset, progression and resolution of cardiovascular diseases and analyses the putative future use of P2X7-based therapies that modulate the IL-1β secretion arm and direct P2X7 antagonists.
Collapse
Affiliation(s)
- Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| |
Collapse
|
30
|
Felix KM, Teng F, Bates NA, Ma H, Jaimez IA, Sleiman KC, Tran NL, Wu HJJ. P2RX7 Deletion in T Cells Promotes Autoimmune Arthritis by Unleashing the Tfh Cell Response. Front Immunol 2019; 10:411. [PMID: 30949163 PMCID: PMC6436202 DOI: 10.3389/fimmu.2019.00411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects ~1% of the world's population. B cells and autoantibodies play an important role in the pathogenesis of RA. The P2RX7 receptor is an ATP-gated cation channel and its activation results in the release of pro-inflammatory molecules. Thus, antagonists of P2RX7 have been considered to have potential as novel anti-inflammatory therapies. Although originally identified for its role in innate immunity, P2RX7 has recently been found to negatively control Peyer's patches (PP) T follicular helper cells (Tfh), which specialize in helping B cells, under homeostatic conditions. We have previously demonstrated that PP Tfh cells are required for the augmentation of autoimmune arthritis mediated by gut commensal segmented filamentous bacteria (SFB). Thus, we hypothesized that P2RX7 is required to control autoimmune disease by keeping the Tfh cell response in check. To test our hypothesis, we analyzed the impact of P2RX7 deficiency in vivo using both the original K/BxN autoimmune arthritis model and T cell transfers in the K/BxN system. We also examined the impact of P2RX7 ablation on autoimmune development in the presence of the gut microbiota SFB. Our data illustrate that contrary to exerting an anti-inflammatory effect, P2RX7 deficiency actually enhances autoimmune arthritis. Interestingly, SFB colonization can negate the difference in disease severity between WT and P2RX7-deficient mice. We further demonstrated that P2RX7 ablation in the absence of SFB caused reduced apoptotic Tfh cells and enhanced the Tfh response, leading to an increase in autoantibody production. It has been shown that activation of TIGIT, a well-known T cell exhaustion marker, up-regulates anti-apoptotic molecules and promotes T cell survival. We demonstrated that the reduced apoptotic phenotype of P2rx7−/− Tfh cells is associated with their increased expression of TIGIT. This suggested that while P2RX7 was regulating the Tfh population by promoting cell death, TIGIT may have been opposing P2RX7 by inhibiting cell death. Together, these results demonstrated that systemic administration of general P2RX7 antagonists may have detrimental effects in autoimmune therapies, especially in Tfh cell-dependent autoimmune diseases, and cell-specific targeting of P2RX7 should be considered in order to achieve efficacy for P2RX7-related therapy.
Collapse
Affiliation(s)
- Krysta M Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Fei Teng
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Nicholas A Bates
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Heqing Ma
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Ivan A Jaimez
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Kiah C Sleiman
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Nhan L Tran
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
31
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
32
|
Purinergic receptors in multiple sclerosis pathogenesis. Brain Res Bull 2018; 151:38-45. [PMID: 30500565 DOI: 10.1016/j.brainresbull.2018.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by the presence of focal lesions in white and grey matter with peripheral immune cells infiltration. Purinergic receptors control immune cell function as well as neuronal and oligodendroglial survival, and the activation of astrocytes and microglia, the endogenous brain immune cells. In particular, ionotropic purinergic receptors P2X4 and P2X7 and metabotropic receptor P2Y12 are differently expressed along the disease and their activation or blockage modifies the course of texperimental autoimmune encephalomyelitis (EAE), the dominant animal model of MS. In this review, we will summarize emerging evidence of the role of these three receptor types as potential MS biomarkers and therapeutic targets.
Collapse
|
33
|
Erb L, Woods LT, Khalafalla MG, Weisman GA. Purinergic signaling in Alzheimer's disease. Brain Res Bull 2018; 151:25-37. [PMID: 30472151 DOI: 10.1016/j.brainresbull.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by three major histopathological markers: amyloid-β (Aβ) plaques, neurofibrillary tangles and gliosis in the central nervous system (CNS). It is now accepted that neuroinflammatory events in the CNS play a crucial role in the development of AD. This review focuses on neuroinflammatory signaling mediated by purinergic receptors (P1 adenosine receptors, P2X ATP-gated ion channels and G protein-coupled P2Y nucleotide receptors) and how therapeutic modulation of purinergic signaling influences disease progression in AD patients and animal models of AD.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Mahmoud G Khalafalla
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
34
|
Mellouk A, Bobé P. CD8 +, but not CD4 + effector/memory T cells, express the CD44 highCD45RB high phenotype with aging, which displays reduced expression levels of P2X 7 receptor and ATP-induced cellular responses. FASEB J 2018; 33:3225-3236. [PMID: 30383448 DOI: 10.1096/fj.201800867r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previously we reported that the sensitivity of CD4+ T cells to ATP does not depend on P2X7 receptor (P2X7R) expression levels but on their activation and differentiation stages. Therefore, here we have investigated a potential relationship between the sensitivity of CD8+ T cells to ATP and their stages of differentiation. Thus, the CD8+ subpopulation exhibits a drastically reduced sensitivity to ATP with aging, which parallels the strong increase of an effector/memory CD8+ subset expressing high levels of CD44 cell adhesion molecule and CD45RB transmembrane phosphatase (CD44hiCD45RBhi). Using l-selectin/CD62L, CC-chemokine receptor 7, and CD127/IL-7 receptor-α markers, we showed that effector/memory CD8+ T cells belong to a central or effector memory subset. In contrast, the CD44hiCD45RBhi effector/memory subset is absent or poorly expressed in the CD4+ T subpopulation regardless of age. While ATP treatment can trigger channel and pore formation, CD62L shedding, phosphatidylserine exposure, and cell death in the CD44loCD45RBhi-naive CD8+ subset, it is unable to induce these cellular activities in the CD44hiCD45RBhi effector/memory CD8+ subset. Importantly, both CD44loCD45RBhi-naive and CD44hiCD45RBhi effector/memory subsets express similar low levels of P2X7R, demonstrating that the sensitivity of CD8+ T cells to ATP depends on the stage of differentiation instead of P2X7R expression levels.-Mellouk, A., Bobé, P. CD8+, but not CD4+ effector/memory T cells, express the CD44highCD45RBhigh phenotype with aging, which displays reduced expression levels of P2X7 receptor and ATP-induced cellular responses.
Collapse
Affiliation(s)
- Amine Mellouk
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| | - Pierre Bobé
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| |
Collapse
|
35
|
Gu BJ, Wiley JS. P2X7 as a scavenger receptor for innate phagocytosis in the brain. Br J Pharmacol 2018; 175:4195-4208. [PMID: 30098011 DOI: 10.1111/bph.14470] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
The P2X7 receptor has been widely studied for its ATP-induced pro-inflammatory effect, but in the absence of a ligand, P2X7 has a second function as a scavenger receptor, which is active in the development of the human brain. The scavenger activity of P2X7 is only evident in the absence of serum but is fully active in cerebrospinal fluid. P2X7 on the cell surface is present as a membrane complex, and an attachment to non-muscle myosin of the cytoskeleton is required for particle engulfment. Selective antagonists of P2X7 pro-inflammatory function have little effect on phagocytosis, but inheritance of a variant haplotype spanning the P2RX7 and P2RX4 genes has been associated with loss of P2X7-mediated phagocytosis. Recent studies in mice suggest that the innate phagocytosis mediated by P2X7 receptors declines with ageing. Thus, defective P2X7-mediated phagocytosis may contribute to age-related neuro-degenerative diseases including Alzheimer's disease, age-related macular degeneration and primary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Ben J Gu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - James S Wiley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The Impact of Purinergic System Enzymes on Noncommunicable, Neurological, and Degenerative Diseases. J Immunol Res 2018; 2018:4892473. [PMID: 30159340 PMCID: PMC6109496 DOI: 10.1155/2018/4892473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Evidences show that purinergic signaling is involved in processes associated with health and disease, including noncommunicable, neurological, and degenerative diseases. These diseases strike from children to elderly and are generally characterized by progressive deterioration of cells, eventually leading to tissue or organ degeneration. These pathological conditions can be associated with disturbance in the signaling mediated by nucleotides and nucleosides of adenine, in expression or activity of extracellular ectonucleotidases and in activation of P2X and P2Y receptors. Among the best known of these diseases are atherosclerosis, hypertension, cancer, epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The currently available treatments present limited effectiveness and are mostly palliative. This review aims to present the role of purinergic signaling highlighting the ectonucleotidases E-NTPDase, E-NPP, E-5'-nucleotidase, and adenosine deaminase in noncommunicable, neurological, and degenerative diseases associated with the cardiovascular and central nervous systems and cancer. In conclusion, changes in the activity of ectonucleotidases were verified in all reviewed diseases. Although the role of ectonucleotidases still remains to be further investigated, evidences reviewed here can contribute to a better understanding of the molecular mechanisms of highly complex diseases, which majorly impact on patients' quality of life.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Andréia Machado Cardoso
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Mânica
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Ruedell Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fabiano Barbosa Carvalho
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Paternò R, Chillon JM. Potentially Common Therapeutic Targets for Multiple Sclerosis and Ischemic Stroke. Front Physiol 2018; 9:855. [PMID: 30057552 PMCID: PMC6053536 DOI: 10.3389/fphys.2018.00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke (IS) and multiple sclerosis (MS) are two pathologies of the central nervous system (CNS). At the first look, this appears to be the only similarity between the two diseases, as they seem quite different. Indeed IS has an acute onset compared to MS which develops chronically; IS is consecutive to blood clot migrating to cerebral blood vessels or decrease in cerebral blood flow following atherosclerosis or decreases in cardiac output, whereas MS is an immune disease associated with neurodegeneration. However, both pathologies share similar pathologic pathways and treatments used in MS have been the object of studies in IS. In this mini-review we will discuss similarities between IS and MS on astrocytes and neuroinflammation hallmarks emphasizing the potential for treatments.
Collapse
Affiliation(s)
- Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Jean-Marc Chillon
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (EA 7517), Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France.,Direction de la Recherche Clinique et de l'Innovation, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
38
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Welsh TG, Kucenas S. Purinergic signaling in oligodendrocyte development and function. J Neurochem 2018; 145:6-18. [PMID: 29377124 DOI: 10.1111/jnc.14315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.
Collapse
Affiliation(s)
- Taylor G Welsh
- Neuroscience Graduate Program, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Safya H, Mellouk A, Legrand J, Le Gall SM, Benbijja M, Kanellopoulos-Langevin C, Kanellopoulos JM, Bobé P. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol 2018. [PMID: 29535730 PMCID: PMC5835135 DOI: 10.3389/fimmu.2018.00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5′-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different abilities of ATP-treated Tconvs to form pore or cleave CD62L depending on their activation and differentiation state suggests that P2X7R signaling varies according to the physiological role of T convs during antigen activation in secondary lymphoid organs or trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Hanaa Safya
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Amine Mellouk
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Sylvain M Le Gall
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 970, INSERM, Université Paris Descartes, Paris, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 1012, INSERM, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | | | - Pierre Bobé
- UMR1174, INSERM, Université Paris-Sud, Orsay, France.,Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| |
Collapse
|
41
|
Colombo F, Bastoni M, Nigro A, Podini P, Finardi A, Casella G, Ramesh M, Farina C, Verderio C, Furlan R. Cytokines Stimulate the Release of Microvesicles from Myeloid Cells Independently from the P2X7 Receptor/Acid Sphingomyelinase Pathway. Front Immunol 2018; 9:204. [PMID: 29467770 PMCID: PMC5808348 DOI: 10.3389/fimmu.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/24/2018] [Indexed: 11/28/2022] Open
Abstract
Microvesicles (MVs) are membrane particles of 200–500 nm released by all cell types constitutively. MVs of myeloid origin are found increased in the cerebrospinal fluid (CSF) of patients suffering from neuroinflammatory disorders, although the factors triggering their production have never been defined. Here, we report that both pro- and anti-inflammatory cytokines, specifically interferon-γ and interleukin-4, are equally able to stimulate the production of MVs from microglia cells and monocytes. Additionally, we found this process to be independent from the best characterized molecular pathway so far described for membrane shedding, which is centered on the purinergic receptor P2X7, whose activation by high concentrations of extracellular ATP (exATP) results in membrane blebbing operated by the secreted enzyme acid sphingomyelinase (ASMase). Moreover, a potent inhibitor of ASMase, injected in a mouse model of multiple sclerosis, failed to reduce the number of MVs in their CSF. This suggests that cytokines, rather than exATP, may exert a long-term control of MV production in the context of chronic inflammation, where both pro- and anti-inflammatory factors play coordinated roles.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Mattia Bastoni
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Nigro
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Podini
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Casella
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Menon Ramesh
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | - Cinthia Farina
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| | | | - Roberto Furlan
- Department of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
42
|
Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, Luchetti S, Ruggieri S, Gasperini C, Laghi-Pasini F, Battistini L, Volonté C. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Front Immunol 2017; 8:1529. [PMID: 29187851 PMCID: PMC5694754 DOI: 10.3389/fimmu.2017.01529] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS.
Collapse
Affiliation(s)
- Susanna Amadio
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy
| | - Chiara Parisi
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy.,Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Savina Apolloni
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy
| | - Cinzia Montilli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Sabina Luchetti
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Serena Ruggieri
- Neurology Unit "Lancisi", San Camillo Forlanini Hospital, Rome, Italy.,Department of Neurology and Psychiatry, University of Rome "Sapienza", Rome, Italy
| | - Claudio Gasperini
- Neurology Unit "Lancisi", San Camillo Forlanini Hospital, Rome, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Cinzia Volonté
- Cellular Neurobiology Unit, Santa Lucia Foundation, Rome, Italy.,Institute of Cell Biology and Neurobiology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
43
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
44
|
Hashimoto-Hill S, Friesen L, Kim M, Kim CH. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol 2017; 10:912-923. [PMID: 27966552 PMCID: PMC5471139 DOI: 10.1038/mi.2016.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/28/2016] [Indexed: 02/04/2023]
Abstract
The intestinal environment harbors a large number of activated T cells, which are potentially inflammatory. To prevent inflammatory responses, intestinal T cells are controlled by various tolerogenic mechanisms, including T-cell apoptosis. We investigated the expression mechanism and function of the purinergic receptor P2X7 in contraction of intestinal CD4+ effector T cells. We found that P2X7 upregulation on CD4+ effector T cells is induced by retinoic acid through retinoic acid receptor α binding to an intragenic enhancer region of the P2rx7 gene. P2X7 is highly expressed by most intestinal αβ and γδ T cells, including T-helper type 1 (Th1) and Th17 cells. The intestinal effector T cells are effectively deleted by P2X7 activation-dependent apoptosis. Moreover, P2X7 activation suppressed T-cell-induced colitis in Rag1-/- mice. The data from vitamin A-deficient and P2rx7-/- mice indicate that the retinoic acid-P2X7 pathway is important in preventing aberrant buildup of activated T cells. We conclude that retinoic acid controls intestinal effector T-cell populations by inducing P2X7 expression. These findings have important ramifications in preventing inflammatory diseases in the intestine.
Collapse
Affiliation(s)
- S. Hashimoto-Hill
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - L. Friesen
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - M. Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - C. H. Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907,Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
45
|
Figliuolo VR, Chaves SP, Savio LEB, Thorstenberg MLP, Machado Salles É, Takiya CM, D'Império-Lima MR, de Matos Guedes HL, Rossi-Bergmann B, Coutinho-Silva R. The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signal 2016; 13:143-152. [PMID: 27866341 DOI: 10.1007/s11302-016-9544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.
Collapse
Affiliation(s)
- Vanessa Ribeiro Figliuolo
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Maria Luiza Prates Thorstenberg
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Christina Maeda Takiya
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho - UFRJ, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
46
|
Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016; 64:1772-87. [PMID: 27219534 DOI: 10.1002/glia.23001] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- LLC. Neuroscience Drug Discovery, Janssen Research & Development, 3210 Merryfield Row, San Diego, California
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, AV Groningen, The Netherlands
| |
Collapse
|
47
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Emerging role of P2X7 receptors in CNS health and disease. Ageing Res Rev 2015; 24:328-42. [PMID: 26478005 DOI: 10.1016/j.arr.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Purinergic signalling in the brain is becoming an important focus in the study of CNS health and disease. Various purinergic receptors are found to be present in different brain cells in varying extent, which get activated upon binding of ATP or its analogues. Conventionally, ATP was considered only as a major metabolic fuel of the cell but its recognition as a neurotransmitter in early 1970s, brought meaningful insights in neuron glia crosstalk, participating in various physiological functions in the brain. P2X7R, a member of ligand gated purinergic receptor (P2X) family, is gaining attention in the field of neuroscience because of its emerging role in broad spectrum of ageing and age related neurological disorders. The aim of this review is to provide an overview about the structure and function of P2X7R highlighting its unique features which distinguish it from the other members of its family. This review critically analyzes the literature mentioning the details about the agonist and antagonist of the P2X7R. It also emphasizes the advancements in understanding the dual role of P2X7R in brain development and disorders inviting meaningful insights about its involvement in Alzheimer's disease, Huntington's disease, Multiple Sclerosis, Neuropathic pain, Spinal Cord Injury and NeuroAIDS. Exploring the roles of P2X7R in detail is critical to identify its therapeutic potential in the treatment of acute and chronic neurodegenerative diseases. Moreover, this review also helps to raise more interest in the neurobiology of the purinergic receptors and thus providing new avenues for future research.
Collapse
|
49
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
50
|
Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:243-54. [PMID: 26359530 DOI: 10.1016/j.neuropharm.2015.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 02/03/2023]
Abstract
Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- M Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain.
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Juan Ignacio Diaz-Hernandez
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology IV, Veterinary School, Universidad Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|