1
|
Guo W, Hu Y, Qian J, Zhu L, Cheng J, Liao J, Fan X. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics 2023; 50:641-651. [PMID: 37544594 DOI: 10.1016/j.jgg.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Yining Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Junyun Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
2
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
4
|
Lehmann-Horn K, Wang SZ, Sagan SA, Zamvil SS, von Büdingen HC. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 2016; 1:e87234. [PMID: 27942581 DOI: 10.1172/jci.insight.87234] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ectopic lymphoid tissues (ELT) can be found in multiple sclerosis (MS) and other organ-specific inflammatory conditions. Whether ELT in the meninges of central nervous system (CNS) autoimmune disease exhibit local germinal center (GC) activity remains unknown. In an experimental autoimmune encephalomyelitis model of CNS autoimmunity, we found activation-induced cytidine deaminase, a GC-defining enzyme, in meningeal ELT (mELT) densely populated by B and T cells. To determine GC activity in mELT, we excised meningeal lymphoid aggregates using laser capture microscopy and evaluated B cell repertoires in mELT and secondary lymphoid organs by next-generation immune repertoire sequencing. We found immunoglobulin heavy chain variable region sequences that were unique to mELT and had accumulated functionally relevant somatic mutations, together indicating localized antigen-driven affinity maturation. Our results suggest that B cells in mELT actively participate in CNS autoimmunity, which may be relevant to mELT in MS and ELT in other chronic inflammatory conditions.
Collapse
|
5
|
Abstract
HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis.
Collapse
|
6
|
Suslov KV. Neutralization-Enhancing RF Antibodies for HIV Vaccines. Front Immunol 2014; 5:634. [PMID: 25566247 PMCID: PMC4266728 DOI: 10.3389/fimmu.2014.00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/26/2014] [Indexed: 11/13/2022] Open
|
7
|
Sundling C, Zhang Z, Phad GE, Sheng Z, Wang Y, Mascola JR, Li Y, Wyatt RT, Shapiro L, Karlsson Hedestam GB. Single-cell and deep sequencing of IgG-switched macaque B cells reveal a diverse Ig repertoire following immunization. THE JOURNAL OF IMMUNOLOGY 2014; 192:3637-44. [PMID: 24623130 DOI: 10.4049/jimmunol.1303334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nonhuman primate model is important for preclinical evaluation of prophylactic and therapeutic intervention strategies. The recent description of the rhesus macaque germline Ig loci and establishment of a database of germline gene segments offer improved opportunities to delineate Ig gene usage in the overall B cell repertoire as well as in response to vaccination. We applied 454-pyrosequencing and single-cell RT-PCR of bulk and sorted memory B cells, respectively, to investigate IGHV gene segment expression in rhesus macaques. The two methods gave remarkably concordant results and identified groups of gene segments that are frequently or rarely used. We further examined the VH repertoire of Ag-specific memory B cells induced by immunization with recombinant HIV-1 envelope glycoproteins, an important vaccine component. We demonstrate that HIV-1 envelope glycoprotein immunization activates a highly polyclonal response composed of most of the expressed VH gene segments, illustrating the considerable genetic diversity of responding B cells following vaccination.
Collapse
Affiliation(s)
- Christopher Sundling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meng W, Pan W, Zhang AJX, Li Z, Wei G, Feng L, Dong Z, Li C, Hu X, Sun C, Luo Q, Yuen KY, Zhong N, Chen L. Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases. PLoS One 2013; 8:e66276. [PMID: 23824680 PMCID: PMC3688872 DOI: 10.1371/journal.pone.0066276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/03/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). METHODOLOGY/PRINCIPAL FINDINGS The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. CONCLUSIONS/SIGNIFICANCE Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/immunology
- Communicable Diseases, Emerging/therapy
- Disease Outbreaks
- Humans
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/therapy
- Macaca mulatta
- Mice
Collapse
Affiliation(s)
- Weixu Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anna J. X. Zhang
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guowei Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenyuan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chufang Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinfang Luo
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwok-Yung Yuen
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Demberg T, Brocca-Cofano E, Xiao P, Venzon D, Vargas-Inchaustegui D, Lee EM, Kalisz I, Kalyanaraman VS, DiPasquale J, McKinnon K, Robert-Guroff M. Dynamics of memory B-cell populations in blood, lymph nodes, and bone marrow during antiretroviral therapy and envelope boosting in simian immunodeficiency virus SIVmac251-infected rhesus macaques. J Virol 2012; 86:12591-604. [PMID: 22973034 PMCID: PMC3497654 DOI: 10.1128/jvi.00298-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection causes B-cell dysregulation and the loss of memory B cells in peripheral blood mononuclear cells (PBMC). These effects are not completely reversed by antiretroviral treatment (ART). To further elucidate B-cell changes during chronic SIV infection and treatment, we investigated memory B-cell subpopulations and plasma cells/plasmablasts (PC/PB) in blood, bone marrow, and lymph nodes of rhesus macaques during ART and upon release from ART. Macaques previously immunized with SIV recombinants and the gp120 protein were included to assess the effects of prior vaccination. ART was administered for 11 weeks, with or without gp120 boosting at week 9. Naïve and resting, activated, and tissue-like memory B cells and PC/PB were evaluated by flow cytometry. Antibody-secreting cells (ASC) and serum antibody titers were assessed. No lasting changes in B-cell memory subpopulations occurred in bone marrow and lymph nodes, but significant decreases in numbers of activated memory B cells and increases in numbers of tissue-like memory B cells persisted in PBMC. Macaque PC/PB were found to be either CD27(+) or CD27(-) and therefore were defined as CD19(+) CD38(hi) CD138(+). The numbers of these PC/PB were transiently increased in both PBMC and bone marrow following gp120 boosting of the unvaccinated and vaccinated macaque groups. Similarly, ASC numbers in PBMC and bone marrow of the two macaque groups also transiently increased following envelope boosting. Nevertheless, serum binding titers against SIVgp120 remained unchanged. Thus, even during chronic SIV infection, B cells respond to antigen, but long-term memory does not develop, perhaps due to germinal center destruction. Earlier and/or prolonged treatment to allow the generation of virus-specific long-term memory B cells should benefit ART/therapeutic vaccination regimens.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Peng Xiao
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Eun Mi Lee
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, USA
| | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, USA
| | | | - Janet DiPasquale
- Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
10
|
Sholukh AM, Mukhtar MM, Humbert M, Essono SS, Watkins JD, Vyas HK, Shanmuganathan V, Hemashettar G, Kahn M, Hu SL, Montefiori DC, Polonis VR, Schur PH, Ruprecht RM. Isolation of monoclonal antibodies with predetermined conformational epitope specificity. PLoS One 2012; 7:e38943. [PMID: 22737224 PMCID: PMC3380854 DOI: 10.1371/journal.pone.0038943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/14/2012] [Indexed: 12/31/2022] Open
Abstract
Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs) from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes) that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs) that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs). To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents.
Collapse
Affiliation(s)
- Anton M. Sholukh
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Muhammad M. Mukhtar
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Humbert
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sosthène S. Essono
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer D. Watkins
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hemant K. Vyas
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivekanandan Shanmuganathan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Girish Hemashettar
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Maria Kahn
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Victoria R. Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Peter H. Schur
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Nonhuman primates have been used for biomedical research for several decades. The high level of genetic homology to humans coupled with their outbred nature has made nonhuman primates invaluable preclinical models. In this review, we summarize recent advances in our understanding of the nonhuman primate immune system, with special emphasis on studies carried out in rhesus macaque (Macaca mulatta). We highlight the utility of nonhuman primates in the characterization of immune senescence and the evaluation of new interventions to slow down the aging of the immune system.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|
12
|
Naïve and memory B cells in the rhesus macaque can be differentiated by surface expression of CD27 and have differential responses to CD40 ligation. J Immunol Methods 2010; 363:166-76. [PMID: 20875419 DOI: 10.1016/j.jim.2010.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022]
Abstract
The rhesus macaque (RM) model has the potential to be an invaluable tool for studying B cell populations during pathogenic infections, however, to date, there has been no definitive delineation of naïve and memory B cell populations in the RM. This has precluded a rigorous analysis of the generation, persistence and resolution of a pathogen-specific memory B cell response. The present study utilized multiple analyses to demonstrate that CD27 expression on B cells is consistent with a memory phenotype. Compared to CD20+CD27- B cells, CD20+CD27+ B cells were larger in size, and preferentially accumulated at effector sites. Direct sequence analysis revealed that CD20+CD27+ B cells had an increased frequency of point mutations that were consistent with somatic hypermutation and at a functional level, CD40 ligation improved CD20+CD27- but not CD20+CD27+ B cell survival in vitro. These data provide definitive evidence that the naïve and memory B cell populations of the RM can be differentiated using surface expression of CD27.
Collapse
|
13
|
AID-mediated somatic hypermutation for generation of viral envelope protein diversity in patient-specific therapeutic HIV vaccines based on induction of neutralizing antibodies. Immunol Lett 2010; 128:86-7. [PMID: 19917313 DOI: 10.1016/j.imlet.2009.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 11/21/2022]
Abstract
The somatic hypermutation (SHM) hypothesis for R5-X4 HIV-1 switching has recently received experimental support. AID-mediated SHM in B cell lines can be used to generate patient's HIV-1 envelope protein diversity in vitro for subsequent vaccination of HIV-1-infected patient at the beginning of asymptomatic period with a resulting mixture of mutant envelope proteins. Suggested approach, which represents a vaccination against R5-X4 HIV-1 switching, might open possibilities for creation of patient-specific therapeutic HIV vaccines based on induction of neutralizing antibodies.
Collapse
|
14
|
Postinfection passive transfer of KD-247 protects against simian/human immunodeficiency virus-induced CD4+ T-cell loss in macaque lymphoid tissue. AIDS 2009; 23:1485-94. [PMID: 19528788 DOI: 10.1097/qad.0b013e32832e5331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preadministration of high-affinity humanized anti-HIV-1 mAb KD-247 by passive transfer provides sterile protection of monkeys from heterologous chimeric simian/human immunodeficiency virus infection. METHODS Beginning 1 h, 1 day, or 1 week after simian/human immunodeficiency virus-C2/1 challenge (20 50% tissue culture infective dose), mature, male cynomolgus monkeys received multiple passive transfers of KD-247 (45 mg/kg) on a weekly basis for approximately 2 months. Concentrations and viral loads were measured in peripheral blood, and CD4 T-cell counts were examined in both peripheral blood and various lymphoid tissues. RESULTS Pharmacokinetic examination revealed similar plasma maintenance levels ranging from 200 to 500 microg/ml of KD-247 in the three groups. One of the six monkeys given KD-247 could not maintain these concentrations, and elicitation of anti-KD-247 idiotype antibody was suggested. All monkeys given KD-247 exhibited striking postinfection protection against both CD4 T-cell loss in various lymphoid tissues and atrophic changes in organs compared with control group animals treated with normal human immunoglobulin G. The KD-247-treated groups were also partially protected against plasma viral load elevation in peripheral blood samples, although the complete protection previously reported with preadministration of this mAb was not achieved. CONCLUSION Postinfection passive transfer of humanized mAb KD-247 with strong neutralizing capacity against challenged virus simian/human immunodeficiency virus-C2/1 protected CD4 T cells in lymphoid organs.
Collapse
|
15
|
Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol 2008; 20:683-94. [PMID: 18397909 DOI: 10.1093/intimm/dxn026] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Statistical methods based on the relative frequency of replacement mutations in B lymphocyte Ig V region sequences have been widely used to detect the forces of selection that shape the B cell repertoire. However, current methods produce an unexpectedly high frequency of false positives and are sensitive to intrinsic biases of somatic hypermutation that can give the appearance of selection. The new statistical test proposed here provides a better trade-off between sensitivity and specificity compared with previous approaches. The low specificity of existing methods was shown in silico to result from an interaction between the effects of positive and negative selection. False detection of positive selection was confirmed in vivo through a re-analysis of published sequence data from diffuse large B cell lymphomas, highlighting the need for re-analysis of some existing studies. The sensitivity of the proposed method to detect selection was validated using new Ig transgenic mouse models in which positive selection was expected to be a significant force, as well as with a simulation-based approach. Previous concerns that intrinsic biases of somatic hypermutation could give the appearance of selection were addressed by extending the current mutation models to more fully account for the impact of microsequence on relative mutability and to include transition bias. High specificity was confirmed using a large set of non-productively rearranged Ig sequences. These results show that selection can be detected in vivo with high specificity using the new method proposed here, allowing greater insight into the existence and direction of antigen-driven selection.
Collapse
Affiliation(s)
- Uri Hershberg
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|