1
|
Clarke RM, Meier M, Wilson MJ. Genome-wide analysis of early vascular tunic repair and regeneration for Botrylloides digenesis reveals striking similarities to human wound healing. Dev Biol 2024; 509:28-42. [PMID: 38342399 DOI: 10.1016/j.ydbio.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The early stages of regeneration after injury are similar to those of wound healing. The ascidian Botrylloides diegensis can regenerate an entire adult from a small fragment of vascular tunic following the removal of all zooids in an injury-induced regeneration model. We investigated the molecular and cellular changes following injury to determine the differences between the healing process and the initiation of whole-body regeneration (WBR). We conducted transcriptome analysis at specific time points during regeneration and wound healing to identify differentially expressed genes (DEGs) and the unique biological processes associated with each state. Our findings revealed 296 DEGs at 10 h post-injury (hpi), with 71 highly expressed in healed tissue and 225 expressed during the WBR process. These DEGs were predicted to play roles in tissue reorganization, integrin signaling, extracellular matrix organization, and the innate immune system. Pathway analysis of the upregulated genes in the healed tunic indicated functional enrichment related to tissue repair, as has been observed in other species. Additionally, we examined the cell types in the tunic and ampullae in both tissue states using histology and in situ hybridization for six genes identified by transcriptome analysis. We observed strong mRNA expression in cells within the WBR tunic, and in small RNA-positive granules near the tunic edge. We hypothesized that many of these genes function in the compaction of the ampullae tunic, which is a pivotal process for WBR and dormancy in B. diegensis, and in an immune response. These findings establish surprising similarities between ascidian regeneration and human wound healing, emphasizing the potential for future investigations into human regenerative and repair mechanisms. This study provides valuable insights into the gene sets specifically activated during regeneration compared to wound healing, shedding light on the divergent activities of these processes.
Collapse
Affiliation(s)
- Rebecca M Clarke
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Michael Meier
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
2
|
Di Gregorio A, Locascio A, Ristoratore F, Spagnuolo A. Women researchers in tunicate biology at the Stazione Zoologica Anton Dohrn in Napoli. Genesis 2023; 61:e23573. [PMID: 37969000 PMCID: PMC11606312 DOI: 10.1002/dvg.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| |
Collapse
|
3
|
Liberti A, Pollastro C, Pinto G, Illiano A, Marino R, Amoresano A, Spagnuolo A, Sordino P. Transcriptional and proteomic analysis of the innate immune response to microbial stimuli in a model invertebrate chordate. Front Immunol 2023; 14:1217077. [PMID: 37600818 PMCID: PMC10433773 DOI: 10.3389/fimmu.2023.1217077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
4
|
Marino R, Melillo D, Italiani P, Boraschi D. Environmental stress and nanoplastics' effects on Ciona robusta: regulation of immune/stress-related genes and induction of innate memory in pharynx and gut. Front Immunol 2023; 14:1176982. [PMID: 37313415 PMCID: PMC10258323 DOI: 10.3389/fimmu.2023.1176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
In addition to circulating haemocytes, the immune system of the solitary ascidian Ciona robusta relies on two organs, the pharynx and the gut, and encompasses a wide array of immune and stress-related genes. How the pharynx and the gut of C. robusta react and adapt to environmental stress was assessed upon short or long exposure to hypoxia/starvation in the absence or in the presence of polystyrene nanoplastics. We show that the immune response to stress is very different between the two organs, suggesting an organ-specific immune adaptation to the environmental changes. Notably, the presence of nanoplastics appears to alter the gene modulation induced by hypoxia/starvation in both organs, resulting in a partial increase in gene up-regulation in the pharynx and a less evident response to stress in the gut. We have also assessed whether the hypoxia/starvation stress could induce innate memory, measured as gene expression in response to a subsequent challenge with the bacterial agent LPS. Exposure to stress one week before challenge induced a substantial change in the response to LPS, with a general decrease of gene expression in the pharynx and a strong increase in the gut. Co-exposure with nanoplastics only partially modulated the stress-induced memory response to LPS, without substantially changing the stress-dependent gene expression profile in either organ. Overall, the presence of nanoplastics in the marine environment seems able to decrease the immune response of C. robusta to stressful conditions, hypothetically implying a reduced capacity to adapt to environmental changes, but only partially affects the stress-dependent induction of innate memory and subsequent responses to infectious challenges.
Collapse
Affiliation(s)
- Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Paola Italiani
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
| | - Diana Boraschi
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Sun J, Wang L, Song L. The primitive complement system in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104565. [PMID: 36216083 DOI: 10.1016/j.dci.2022.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The complement system is an important immune defense mechanism that plays essential roles in both innate and adaptive immunity of vertebrates. Since complement components are identified in deuterostome and even primitive protostome species, the origin and evolution of complement system in invertebrates have been of great interest. Recently, research on the complement system in mollusc immunity has been increasing due to their importance in worldwide aquaculture, and their phylogenetic position. Complement components including C3, C1q domain containing protein (C1qDCP), C-type lectin (CTL), ficolin-like, mannose-binding lectin (MBL)-associated serine proteases like (MASPL), and factor B have been identified, suggesting the existence of complement system in molluscs. The lectin pathway has been outlined in molluscs, which is initiated by CTL with CCP domain and MASPL protein to generate C3 cleavage fragments. The molluscan C1qDCP exhibits the capability to bind human IgG, indicating the existence of possible C1qDCP-mediated activation pathway in molluscs. The activation of C3 regulates the expressions of immune effectors (cytokines and antibacterial peptides), mediates the haemocyte phagocytosis, and inhibits the bacterial growth. Some MACPF domain containing proteins may replace the missing terminal pathway in molluscs. This article provides a review of complement system in molluscs, including its components, activation mechanisms and functions in the immune response of molluscs.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
6
|
Ricci L, Salmon B, Olivier C, Andreoni-Pham R, Chaurasia A, Alié A, Tiozzo S. The Onset of Whole-Body Regeneration in Botryllus schlosseri: Morphological and Molecular Characterization. Front Cell Dev Biol 2022; 10:843775. [PMID: 35237607 PMCID: PMC8882763 DOI: 10.3389/fcell.2022.843775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Colonial tunicates are the only chordates that regularly regenerate a fully functional whole body as part of their asexual life cycle, starting from specific epithelia and/or mesenchymal cells. In addition, in some species, whole-body regeneration (WBR) can also be triggered by extensive injuries, which deplete most of their tissues and organs and leave behind only small fragments of their body. In this manuscript, we characterized the onset of WBR in Botryllus schlosseri, one colonial tunicate long used as a laboratory model. We first analyzed the transcriptomic response to a WBR-triggering injury. Then, through morphological characterization, in vivo observations via time-lapse, vital dyes, and cell transplant assays, we started to reconstruct the dynamics of the cells triggering regeneration, highlighting an interplay between mesenchymal and epithelial cells. The dynamics described here suggest that WBR in B. schlosseri is initiated by extravascular tissue fragments derived from the injured individuals rather than particular populations of blood-borne cells, as has been described in closely related species. The morphological and molecular datasets here reported provide the background for future mechanistic studies of the WBR ontogenesis in B. schlosseri and allow to compare it with other regenerative processes occurring in other tunicate species and possibly independently evolved.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, Nice, France
| | - Bastien Salmon
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Caroline Olivier
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Rita Andreoni-Pham
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
- Institute for Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, Nice, France
| | - Ankita Chaurasia
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Alexandre Alié
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), CNRS, Sorbonne University, Paris, France
| |
Collapse
|
7
|
Longo V, Parrinello D, Longo A, Parisi MG, Parrinello N, Colombo P, Cammarata M. The conservation and diversity of ascidian cells and molecules involved in the inflammatory reaction: The Ciona robusta model. FISH & SHELLFISH IMMUNOLOGY 2021; 119:384-396. [PMID: 34687879 DOI: 10.1016/j.fsi.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response. The internal defense of ascidians mainly relies on hemocytes circulating in the hemolymph and pharynx. Hemocytes can be in vivo challenged by LPS injection and various granulocyte and vacuolated cell populations differentiated to produce and release inflammatory factors. Molecular biology and gene expression studies revealed complex defense mechanisms involving different inflammatory hemocytes. Furthermore, cloning procedures allowed sequence analyses and molecular studies disclose immune-related gene families including TOLL-like receptors, galectins, C-type lectins, collectins, interlectins, pentraxine-like, peroxinectins, complement factors-like, TNFα-like, IL-17-like, TGF-like, MIF-like. These genes are promptly upregulated by the inflammatory stimulus and show a time course of transcription similar to each other. Domains sequence similarity and phylogenetic relationships with the vertebrate counterparts are shedding some light on immune-related gene evolution. Selective bioassays as well as bioinformatic approaches have allowed the characterization of antimicrobial peptides and the identification of post transcriptional molecular mechanisms able of influencing dynamics of gene regulation are described. In synthesis, the purpose of this article is to further explore the topic of hemocyte and molecules related to internal defence of ascidians involved in the inflammatory reaction, as well as to discuss current and future study options through a detailed literature review.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicolò Parrinello
- Department of Earth and Marine Science, University of Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| | - Matteo Cammarata
- Department of Earth and Marine Science, University of Palermo, Italy
| |
Collapse
|
8
|
Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri. BIOLOGY 2020; 9:biology9090263. [PMID: 32882947 PMCID: PMC7565592 DOI: 10.3390/biology9090263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/15/2023]
Abstract
As an evolutionary ancient component of the metazoan immune defense toolkit, the complement system can modulate cells and humoral responses of both innate and (in jawed vertebrates) adaptive immunity. All the three known complement-activation pathways converge on the cleavage of C3 to C3a and C3b. The anaphylatoxin C3a behaves as a chemokine in inflammatory responses, whereas C3b exerts an opsonic role and, ultimately, can activate the lytic pathway. C3aR, one of the mammalian receptors for C3a, is a member of the G-protein-coupled receptor family sharing seven transmembrane alpha helixes. C3aR can act as a chemokine and recruit neutrophils, triggering degranulation and respiratory burst, which initiates an inflammatory reaction. Mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript showing homology with both mammalian C3aR and C5aR. The gene (bsc3/c5ar) is actively transcribed in morula cells, the circulating immunocyte triggering the inflammatory reactions in response to the recognition of nonself. Its transcription is modulated during the recurrent cycles of asexual reproduction known as blastogenetic cycles. Moreover, the treatment of hemocytes with C3aR agonist, induces a significant increase in the transcription of BsC3, revealing the presence of an autocrine feedback system able to modulate the expression of C3 in order to obtain a rapid clearance of potentially dangerous nonself cells or particles. The obtained results support the previously proposed role of complement as one of the main humoral components of the immune response in tunicates and stress the importance of morula cells in botryllid ascidian innate immunity.
Collapse
|
9
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
10
|
Peronato A, Drago L, Rothbächer U, Macor P, Ballarin L, Franchi N. Complement system and phagocytosis in a colonial protochordate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103530. [PMID: 31669308 DOI: 10.1016/j.dci.2019.103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
In the present work, we investigated, in the colonial ascidian Botryllus schlosseri, the role of complement C3 (BsC3) in phagocytosis. We studied the modulation of BsC3 transcription in the course of the colonial blastogenetic cycle, with particular reference to the takeover, when apoptotic cells in the tissues of old zooids are cleared by circulating phagocytes. In situ hybridisation with BsC3 riboprobes labelled only morula cells, the most abundant haemocytes. Anti-hC3 antibody recognised morula cells and also phagocytes when haemocytes were previously incubated with zymosan. The inhibition of C3 activation prevented the labelling of phagocytes. In phagocytosis assays with haemocytes from colonies injected with anti-hC3 antibody or bsc3 iRNA, the capability to ingest target cells was significantly (p < 0.001) reduced. Therefore, our results strongly support a key role of BsC3 in phagocytosis and open to new investigations on the nature of the receptors of the products of BsC3 activation.
Collapse
Affiliation(s)
| | - Laura Drago
- Department of Biology, University of Padova, Italy
| | | | - Paolo Macor
- Department of Life Sciences, University of Trieste, Italy
| | | | | |
Collapse
|
11
|
Melillo D, Marino R, Della Camera G, Italiani P, Boraschi D. Assessing Immunological Memory in the Solitary Ascidian Ciona robusta. Front Immunol 2019; 10:1977. [PMID: 31475017 PMCID: PMC6707023 DOI: 10.3389/fimmu.2019.01977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
The immune defensive mechanisms active in the solitary ascidian Ciona robusta include phagocytic and encapsulating activity, largely brought about by phagocytic cells within the haemocyte population, the presence of complement components, which have been molecularly and functionally identified, and expression of a number of immune-related genes and pathways, identified by genome-based homology with vertebrate counterparts. Since C. robusta only displays highly conserved innate immune mechanisms, being devoid of an adaptive immune system, this organism is an excellent model for studying the features of innate memory, i.e., the capacity of the innate immune system to re-programming its responsiveness to potentially dangerous agents upon repeated exposure. In this study, we have developed an in vivo model for assessing the establishment and molecular/functional features of innate memory, by sequentially exposing C. robusta to a priming stimulus (microbial molecules), followed by a period of resting to return to basal conditions, and a challenge with microbial agents in homologous or cross-stimulation. The endpoints of immune activation were a functional activity (phagocytosis) and the molecular profiles of immune-related gene expression. The results show that exposure of C. robusta to microbial agents induces a reaction that primes animals for developing a different (expectedly more protective) response to subsequent challenges, showing the effective establishment of an immune memory. This immune memory relies on the modulation of a number of different mechanisms, some of which are priming-specific, others that are challenge-specific, and others that are non-specific, i.e., are common to all priming/challenge combinations (e.g., up-regulation of the Tnf and Lbp genes). Memory-dependent expression of the humoral immunity-related gene C3ar inversely correlates with memory-dependent variations of phagocytic rate, suggesting that complement activation and phagocytosis are alternative defensive mechanisms in C. robusta. Conversely, memory-dependent expression of the cellular immunity-related gene Cd36 directly correlates with variations of phagocytic rate, suggesting a direct involvement of this gene in the functional regulation of phagocytosis.
Collapse
Affiliation(s)
- Daniela Melillo
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giacomo Della Camera
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Paola Italiani
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy
| | - Diana Boraschi
- National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Naples, Italy.,Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
12
|
Melillo D, Marino R, Italiani P, Boraschi D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front Immunol 2018; 9:1915. [PMID: 30186286 PMCID: PMC6113390 DOI: 10.3389/fimmu.2018.01915] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
The ability of developing immunological memory, a characteristic feature of adaptive immunity, is clearly present also in innate immune responses. In fact, it is well known that plants and invertebrate metazoans, which only have an innate immune system, can mount a faster and more effective response upon re-exposure to a stimulus. Evidence of immune memory in invertebrates comes from studies in infection immunity, natural transplantation immunity, individual, and transgenerational immune priming. These studies strongly suggest that environment and lifestyle take part in the development of immunological memory. However, in several instances the formal correlation between the phenomenon of immune memory and molecular and functional immune parameters is still missing. In this review, we have critically examined the cellular and humoral aspects of the invertebrate immune memory responses. In particular, we have focused our analysis on studies that have addressed immune memory in the most restrictive meaning of the term, i.e., the response to a challenge of a quiescent immune system that has been primed in the past. These studies highlight the central role of an increase in the number of immune cells and of their epigenetic re-programming in the establishment of sensu stricto immune memory in invertebrates.
Collapse
Affiliation(s)
- Daniela Melillo
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Naples, Italy.,Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
13
|
Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev 2017; 274:9-15. [PMID: 27782327 DOI: 10.1111/imr.12474] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement system is an evolutionarily ancient component of immunity that revolves around the central component C3. With the recent description of intracellular C3 stores in many types of human cells, our view of the complement system has expanded. In this article, we hypothesize that a primitive version of C3 comprised the first element of the original complement system and initially functioned intracellularly and on the membrane of single-celled organisms. With increasing specialization and multicellularity, C3 evolved a secretory capacity that allowed it to play a protective role in the interstitial space. Upon development of a pumped circulatory system, C3 was synthesized in large amounts and secreted by the liver to protect the intravascular space. Recent discoveries of intracellular C3 activation, a C3-based recycling pathway and C3 being a driver and programmer of cell metabolism suggest that the complement system utilizes C3 to guard not only extracellular but also the intracellular environment. We predict that the major functions of C3 in all four locations (i.e. intracellular, membrane, interstitium and circulation) are similar: opsonization, membrane perturbation, triggering inflammation, and metabolic reprogramming.
Collapse
Affiliation(s)
- Michelle Elvington
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - M Kathryn Liszewski
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John P Atkinson
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
15
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
16
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
18
|
Di Bella MA, Carbone MC, De Leo G. Ultrastructural aspects of naturally occurring wound in the tunic of two ascidians: Ciona intestinalis and Styela plicata (Tunicata). Micron 2015; 69:6-14. [DOI: 10.1016/j.micron.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
19
|
Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:430-438. [PMID: 24877658 DOI: 10.1016/j.dci.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The complement system is a fundamental effector mechanism of the innate immunity in both vertebrates and invertebrates. The comprehension of its roots in the evolution is a useful step to understand how the main complement-related proteins had changed in order to adapt to new environmental conditions and life-cycles or, in the case of vertebrates, to interact with the adaptive immunity. Data on organisms evolutionary close to vertebrates, such as tunicates, are of primary importance for a better understanding of the changes in immune responses associated with the invertebrate-vertebrate transition. Here we report on the characterization of C3 and Bf transcripts from the colonial ascidian Botryllus schlosseri (BsC3 and BsBf, respectively), a reliable model organism for immunobiological research, and present a comparative analysis of amino acid sequences of C3s and Bfs suggesting that, in deuterostomes, the structure of these proteins remained largely unchanged. We also present new data on the cells responsible of the expression of BsC3 and BsBf showing that cytotoxic immunocytes are the sole cells where the relative transcripts can be found. Finally, using the C3 specific inhibitor compstatin, we demonstrate the opsonic role of BsC3 in accordance with the idea that promotion of phagocytosis is one of the main function of C3 in metazoans.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy.
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy
| |
Collapse
|
20
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
21
|
Giacomelli S, Melillo D, Lambris JD, Pinto MR. Immune competence of the Ciona intestinalis pharynx: complement system-mediated activity. FISH & SHELLFISH IMMUNOLOGY 2012; 33:946-952. [PMID: 22967954 DOI: 10.1016/j.fsi.2012.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
In the tunicate Ciona intestinalis, the ciliated pharynx, which connects the external environment to a highly developed and compartmentalized gastrointestinal system, represents the natural portal of entry for a vast and diverse, potentially pathogenic microbial community. To address the role of the pharynx in immune surveillance in Ciona, we asked whether C3, the key component of the complement system, was expressed in this organ and whether the encoded protein was functionally active. We found by real-time PCR that C3, constitutively expressed in the pharynx, is up-regulated by LPS injection. Using two specific anti-CiC3 and anti-CiC3a polyclonal antibodies in immunohistochemical staining of pharynx sections, we found that the gene product was localized to hemocytes of the pharyngeal bars (identified as granular amoebocytes) and in stigmata ciliated cells. Use of the same antibodies in Western blot analysis indicated that CiC3 and its activation products CiC3b and CiC3a are present in pharynx homogenates. Our observation that the amount of the bioactive fragment CiC3a increased in the pharynx of LPS-treated animals provides the first molecular and functional evidence for complement-mediated immunological activity in the tunicate pharynx.
Collapse
|
22
|
Dishaw LJ, Flores-Torres JA, Mueller MG, Karrer CR, Skapura DP, Melillo D, Zucchetti I, De Santis R, Pinto MR, Litman GW. A Basal chordate model for studies of gut microbial immune interactions. Front Immunol 2012; 3:96. [PMID: 22563328 PMCID: PMC3342567 DOI: 10.3389/fimmu.2012.00096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
Complex symbiotic interactions at the surface of host epithelia govern most encounters between host and microbe. The epithelium of the gut is a physiologically ancient structure that is comprised of a single layer of cells and is thought to possess fully developed immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last common ancestor of all vertebrates, is a potentially valuable model for studying barrier defenses and gut microbial immune interactions. A variety of innate immunological phenomena have been well characterized in Ciona, of which many are active in the gut tissues. Interactions with gut microbiota likely involve surface epithelium, secreted immune molecules including variable region-containing chitin-binding proteins, and hemocytes from a densely populated laminar tissue space. The microbial composition of representative gut luminal contents has been characterized by molecular screening and a potentially relevant, reproducible, dysbiosis can be induced via starvation. The dialog between host and microbe in the gut can be investigated in Ciona against the background of a competent innate immune system and in the absence of the integral elements and processes that are characteristic of vertebrate adaptive immunity.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, USF/ACH Children's Research Institute, University of South Florida College of Medicine St. Petersburg, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A role for variable region-containing chitin-binding proteins (VCBPs) in host gut-bacteria interactions. Proc Natl Acad Sci U S A 2011; 108:16747-52. [PMID: 21930927 DOI: 10.1073/pnas.1109687108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A number of different classes of molecules function as structural matrices for effecting innate and adaptive immunity. The most extensively characterized mediators of adaptive immunity are the immunoglobulins and T-cell antigen receptors found in jawed vertebrates. In both classes of molecules, unique receptor specificity is effected through somatic variation in the variable (V) structural domain. V region-containing chitin-binding proteins (VCBPs) consist of two tandem Ig V domains as well as a chitin-binding domain. VCBPs are encoded at four loci (i.e., VCBPA-VCBPD) in Ciona, a urochordate, and are expressed by distinct epithelial cells of the stomach and intestine, as well as by granular amoebocytes present in the lamina propria of the gut and in circulating blood. VCBPs are secreted into the gut lumen, and direct binding to bacterial surfaces can be detected by immunogold analysis. Affinity-purified native and recombinant VCBP-C, as well as a construct consisting only of the tandem V domains, enhance bacterial phagocytosis by granular amoebocytes in vitro. Various aspects of VCBP expression and function suggest an early origin for the key elements that are central to the dialogue between the immune system of the host and gut microflora.
Collapse
|
24
|
Parrinello N, Vizzini A, Salerno G, Sanfratello MA, Cammarata M, Arizza V, Vazzana M, Parrinello D. Inflamed adult pharynx tissues and swimming larva of Ciona intestinalis share CiTNFα-producing cells. Cell Tissue Res 2010; 341:299-311. [DOI: 10.1007/s00441-010-0993-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/06/2010] [Indexed: 12/14/2022]
|
25
|
Origin and evolution of the vertebrate leukocyte receptors: the lesson from tunicates. Immunogenetics 2009; 61:463-81. [PMID: 19404636 DOI: 10.1007/s00251-009-0373-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/03/2009] [Indexed: 12/21/2022]
Abstract
Two selected receptor genes of the immunoglobulin superfamily (IgSF), one CTX/JAM family member, and one poliovirus receptor-like nectin that have features of adhesion molecules can be expressed by Ciona hemocytes, the effectors of immunity. They can also be expressed in the nervous system (CTX/JAM) and in the ovary (nectin). The genes encoding these receptors are located among one set of genes, spread over Ciona chromosomes 4 and 10, and containing other IgSF members homologous to those encoded by genes present in a tetrad of human (1, 3 + X, 11, 21 + 19q) or bird chromosomes (1, 4, 24, 31) that include the leukocyte receptor complex. It is proposed that this tetrad is due to the two rounds of duplication that affected a single prevertebrate ancestral region containing a primordial leukocyte receptor complex involved in immunity and other developmental regulatory functions.
Collapse
|
26
|
An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J Mol Evol 2009; 68:475-89. [PMID: 19357801 DOI: 10.1007/s00239-009-9214-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 02/05/2009] [Accepted: 02/16/2009] [Indexed: 10/25/2022]
Abstract
Class A G-protein-coupled receptors (GPCRs) constitute a large family of transmembrane receptors. Helical distortions play a major role in the overall fold of these receptors. Most are related to conserved proline residues. However, in transmembrane helix 2, the proline pattern is not conserved, and when present, proline may be located at position 2.58, 2.59, or 2.60. Sequence analysis, three-dimensional data mining, and molecular modeling were undertaken to investigate the origin of this unusual pattern. Taken together, the data strongly support the assumption that an indel led to two structural motifs for helix 2: a bulged structure in P2.59 and P2.60 receptors and a "typical" proline kink in P2.58 receptors. The proline pattern of helix 2 can be used as an evolutionary marker and helps to trace the molecular evolution of class A GPCRs. Two indel events yielding functional receptors occurred independently. One indel arose very early in GPCR evolution, in a bilaterian ancestor, before the protostome-deuterostome divergence. This indel led to the split between the P2.58 somatostatin/opioid receptors and other peptide receptors with the P2.59 pattern. A second indel also occurred in insect opsins and corresponds to a deletion. Subfamilies with proline at position 2.59 or no proline expanded earlier, whereas P2.60 receptors remained marginal throughout evolution. P2.58 receptors underwent rapid expansion in vertebrates with the development of the chemokine and purinergic receptor subfamilies from somatostatin/opioid-related ancestors.
Collapse
|
27
|
Tahtouh M, Croq F, Vizioli J, Sautiere PE, Van Camp C, Salzet M, Daha MR, Pestel J, Lefebvre C. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol 2009; 46:523-31. [DOI: 10.1016/j.molimm.2008.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
28
|
Zucchetti I, Marino R, Pinto MR, Lambris JD, Du Pasquier L, De Santis R. ciCD94-1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation 2007; 76:267-82. [PMID: 17924966 DOI: 10.1111/j.1432-0436.2007.00214.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-type lectins play an important role in the immune system and are part of a large superfamily that includes C-type lectin-like domain (CTLD)-containing proteins. Divergent evolution, acting on the CTLD fold, has generated the Ca2+-dependent carbohydrate-binding lectins and molecules, as the lectin-like natural killer (NK) receptors that bind proteins, rather than sugars, in a Ca(2+)-independent manner. We have studied ciCD94-1, a CTLD-containing protein from the tunicate Ciona intestinalis, which is a homolog of the CD94 vertebrate receptor that is expressed on NK cells and modulates their cytotoxic activity by interacting with MHC class I molecules. ciCD94-1 shares structural features with the CTLD-containing molecules that recognize proteins, suggesting that it could be located along the evolutionary pathway leading to the NK receptors. ciCD94-1 was up-regulated in response to inflammation induced by lipopolysaccharide (LPS) acting on a blood cell type present in both the tunic and circulating blood. Furthermore, an anti-ciCD94-1 antibody specifically inhibited the phagocytic activity of these cells. ciCD94-1 was also expressed during development in the larva and in the early stages of metamorphosis in structures related to the nervous system, and loss of its function affected the correct differentiation of these territories. These findings suggest that ciCD94-1 has different roles in immunity and in development, thus strengthening the concept of gene co-option during evolution and of an evolutionary relationship between the nervous and the immune systems.
Collapse
Affiliation(s)
- Ivana Zucchetti
- Laboratory of Cell Biology, Stazione Zoologica "Anton Dohrn" Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Pinto MR, Melillo D, Giacomelli S, Sfyroera G, Lambris JD. Ancient origin of the complement system: emerging invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:372-88. [PMID: 17892225 DOI: 10.1007/978-0-387-71767-8_26] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Rosaria Pinto
- Stazione Zoologica "Anton Dohrn", Laboratory of Cell Biology, Napoli, Italy.
| | | | | | | | | |
Collapse
|