1
|
Lin Y, Chen CY, Ku YC, Wang LC, Hung CC, Lin ZQ, Chen BH, Hung JT, Sun YC, Hung KF. A modified SELEX approach to identify DNA aptamers with binding specificity to the major histocompatibility complex presenting ovalbumin model antigen. RSC Adv 2023; 13:32681-32693. [PMID: 37936644 PMCID: PMC10626974 DOI: 10.1039/d3ra04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Aptamers have sparked significant interest in cell recognition because of their superior binding specificity and biocompatibility. Cell recognition can be mediated by targeting the major histocompatibility complex (MHC) that presents short peptides derived from intracellular antigens. Although numerous antibodies have demonstrated a specific affinity for the peptide-MHC complex, the number of aptamers that exhibit comparable characteristics is limited. Aptamers are usually selected from large libraries via the Systemic Evolution of Ligands by Exponential Enrichment (SELEX), an iterative process of selection and PCR amplification to enrich a pool of aptamers with high affinity. However, the success rate of aptamer identification is low, possibly due to the presence of complementary sequences or sequences rich in guanine and cytosine that are less accessible for primers. Here, we modified SELEX by employing systemic consecutive selections with minimal PCR amplification. We also modified the analysis by selecting aptamers that were identified in multiple selection rounds rather than those that are highly enriched. Using this approach, we were able to identify two aptamers with binding specificity to cells expressing the ovalbumin alloantigen as a proof of concept. These two aptamers were also discovered among the top 150 abundant candidates, despite not being highly enriched, by performing conventional SELEX. Additionally, we found that highly enriched aptamers tend to contain fractions of the primer sequence and have minimal target affinity. Candidate aptamers are easily missed in the conventional SELEX process. Therefore, our modification for SELEX may facilitate the identification of aptamers for more application in diverse biomedical fields. Significance: we modify the conventional method to improve the efficiency in the identification of the aptamer, a single strand of nucleic acid with binding specificity to the target molecule, showing as a proof of concept that this approach is particularly useful to select aptamers that can selectively bind to cells presenting a particular peptide by the major histocompatibility complex (MHC) on the cell surface. Given that cancer cells may express mutant peptide-MHC complexes that are distinct from those expressed by normal cells, this study sheds light on the potential application of aptamers to cancer cell targeting.
Collapse
Affiliation(s)
- Yang Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu-Chia Ku
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Li-Chin Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chia-Chien Hung
- School of Computer Science, Georgia Institute of Technology Atlanta GA USA
| | - Zhi-Qian Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Bing-Hong Chen
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | | | - Yi-Chen Sun
- School of Medicine, Tzu-Chi University Hualien Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation New Taipei City Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University Taipei Taiwan
| |
Collapse
|
2
|
Nakamura T, Kobayashi E, Hamana H, Hayakawa Y, Muraguchi A, Hayashi A, Ozawa T, Kishi H. Evaluation of chimeric antigen receptor of humanized rabbit-derived T cell receptor-like antibody. Cancer Sci 2022; 113:3321-3329. [PMID: 35766417 DOI: 10.1111/cas.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
T-cell receptor (TCR)-like antibodies that specifically recognize antigenic peptides presented on major histocompatibility complex (MHC) molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like antibodies using a rabbit system. We humanized previously generated rabbit-derived TCR-like antibodies reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced CAR-T cells, and evaluated their anti-tumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like antibodies using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation chimeric antigen receptor (CAR) using scFv of the humanized TCR-like antibodies and then transduced them into human T-cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated anti-tumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like antibodies. Together with our established and efficient generation procedure for TCR-like antibodies using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like antibodies to CAR-T cells will help improve next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Tomoko Nakamura
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan.,Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Department of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
4
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
5
|
Peri SSS, Raza MU, Sabnani MK, Ghaffari S, Gimlin S, Wawro DD, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Self-Induced Back-Action Actuated Nanopore Electrophoresis (SANE) Sensor for Label-Free Detection of Cancer Immunotherapy-Relevant Antibody-Ligand Interactions. Methods Mol Biol 2022; 2394:343-376. [PMID: 35094337 PMCID: PMC9207820 DOI: 10.1007/978-1-0716-1811-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We fabricated a novel single molecule nanosensor by integrating a solid-state nanopore and a double nanohole nanoaperture. The nanosensor employs Self-Induced Back-Action (SIBA) for optical trapping and enables SIBA-Actuated Nanopore Electrophoresis (SANE) for concurrent acquisition of bimodal optical and electrical signatures of molecular interactions. This work describes how to fabricate and use the SANE sensor to quantify antibody-ligand interactions. We describe how to analyze the bimodal optical-electrical data to improve upon the discrimination of antibody and ligand versus bound complex compared to electrical measurements alone. Example results for specific interaction detection are described for T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting Major Histocompatibility Complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells. We also describe how to analyze the bimodal optical-electrical data to discriminate between specific and non-specific interactions between antibodies and ligands. Example results for non-specific interactions are shown for cancer-irrelevant TCRmAbs targeting the same pMHCs, as a control. These example results demonstrate the utility of the SANE sensor as a potential screening tool for ligand targets in cancer immunotherapy, though we believe that its potential uses are much broader.
Collapse
Affiliation(s)
| | - Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA
| | - Manoj K Sabnani
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Soroush Ghaffari
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | | | - Debra D Wawro
- Resonant Sensors Incorporated (RSI), Arlington, TX, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jon Weidanz
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
6
|
Duan Z, Ho M. T-Cell Receptor Mimic Antibodies for Cancer Immunotherapy. Mol Cancer Ther 2021; 20:1533-1541. [PMID: 34172530 DOI: 10.1158/1535-7163.mct-21-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Antibody-based immunotherapies show clinical effectiveness in various cancer types. However, the target repertoire is limited to surface or soluble antigens, which are a relatively small percentage of the cancer proteome. Most proteins of the human proteome are intracellular. Short peptides from intracellular targets can be presented by MHC class I (MHC-I) molecules on cell surface, making them potential targets for cancer immunotherapy. Antibodies can be developed to target these peptide/MHC complexes, similar to the recognition of such complexes by the T-cell receptor (TCR). These antibodies are referred to as T-cell receptor mimic (TCRm) or TCR-like antibodies. Ongoing preclinical and clinical studies will help us understand their mechanisms of action and selection of target epitopes for immunotherapy. The present review will summarize and discuss the selection of intracellular antigens, production of the peptide/MHC complexes, isolation of TCRm antibodies for therapeutic applications, limitations of TCRm antibodies, and possible ways to advance TCRm antibody-based approaches into the clinic.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland. .,Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Vanhooren J, Derpoorter C, Depreter B, Deneweth L, Philippé J, De Moerloose B, Lammens T. TARP as antigen in cancer immunotherapy. Cancer Immunol Immunother 2021; 70:3061-3068. [PMID: 34050774 PMCID: PMC8164403 DOI: 10.1007/s00262-021-02972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
In recent decades, immunotherapy has become a pivotal element in cancer treatment. A remaining challenge is the identification of cancer-associated antigens suitable as targets for immunotherapeutics with potent on-target and few off-tumor effects. The T-cell receptor gamma (TCRγ) chain alternate reading frame protein (TARP) was first discovered in the human prostate and androgen-sensitive prostate cancer. Thereafter, TARP was also identified in breast and endometrial cancers, salivary gland tumors, and pediatric and adult acute myeloid leukemia. Interestingly, TARP promotes tumor cell proliferation and migration, which is reflected in an association with worse survival. TARP expression in malignant cells, its role in oncogenesis, and its limited expression in normal tissues raised interest in its potential utility as a therapeutic target, and led to development of immunotherapeutic targeting strategies. In this review, we provide an overview of TARP expression, its role in different cancer types, and currently investigated TARP-directed immunotherapeutic options.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Barbara Depreter
- Department of Haematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Larissa Deneweth
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Dass SA, Selva Rajan R, Tye GJ, Balakrishnan V. The potential applications of T cell receptor (TCR)-like antibody in cervical cancer immunotherapy. Hum Vaccin Immunother 2021; 17:2981-2994. [PMID: 33989511 DOI: 10.1080/21645515.2021.1913960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is ranked as the fourth most common cancer in women worldwide. Monoclonal antibody has created a new dimension in the immunotherapy of many diseases, including cervical cancer. The antibody's ability to target various aspects of cervical cancer (oncoviruses, oncoproteins, and signaling pathways) delivers a promising future for efficient immunotherapy. Besides, technologies such as hybridoma and phage display provide a fundamental platform for monoclonal antibody generation and create the opportunity to generate novel antibody classes including, T cell receptor (TCR)-like antibody. In this review, the current immunotherapy strategies for cervical cancer are presented. We have also proposed a novel concept of T cell receptor (TCR)-like antibody and its potential applications for enhancing cervical cancer therapeutics. Finally, the possible challenges in TCR-like antibody application for cervical cancer therapeutics have been addressed, and strategies to overcome the challenges have been highlighted to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Rehasri Selva Rajan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, George Town, Malaysia
| |
Collapse
|
9
|
Ozawa T, Kobayashi E, Hamana H, Nakamura T, Lyu F, Hayashi A, Muraguchi A, Kishi H. Rapid and efficient generation of T-cell receptor-like antibodies using chip-based single-cell analysis. Eur J Immunol 2021; 51:1850-1853. [PMID: 33728647 DOI: 10.1002/eji.202049083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
Generation of TCR-like monoclonal antibodies using conventional methods is markedly laborious and inefficient. We have proposed improvements of ISAAC (chip-based Ab-secreting cell [ASC] screening method), allows comprehensive analysis of ASCs at the single-cell level to obtain TCR-like antibodies; blocking procedure enables us to avoid the detection of non-TCR-like antibodies.
Collapse
Affiliation(s)
- Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tomoko Nakamura
- Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Fulian Lyu
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences (Medicine), University of Toyama, Toyama, Japan.,Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Taipei, Taiwan, P. R. China
| | - Atsushi Hayashi
- Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Ortega PA, Silva-Miranda M, Torres-Larios A, Campos-Chávez E, Franken KCLCM, Ottenhoff THM, Ivanyi J, Espitia C. Selection of a Single Domain Antibody, Specific for an HLA-Bound Epitope of the Mycobacterial Ag85B Antigen. Front Immunol 2020; 11:577815. [PMID: 33117380 PMCID: PMC7564862 DOI: 10.3389/fimmu.2020.577815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023] Open
Abstract
T cells recognizing epitopes on the surface of mycobacteria-infected macrophages can impart protection, but with associated risk for reactivation to lung pathology. We aimed to identify antibodies specific to such epitopes, which carry potentials for development toward novel therapeutic constructs. Since epitopes presented in the context of major histocompatibility complex alleles are rarely recognized by naturally produced antibodies, we used a phage display library for the identification of monoclonal human single domain antibody producing clones. The selected 2C clone displayed T cell receptor-like recognition of an HLA-A*0201 bound 199KLVANNTRL207 peptide from the Ag85B antigen, which is known to be an immunodominant epitope for human T cells. The specificity of the selected domain antibody was demonstrated by solid phase immunoassay and by immunofluorescent surface staining of peptide loaded cells of the T2 cell line. The antibody affinity binding was determined by biolayer interferometry. Our results validated the used technologies as suitable for the generation of antibodies against epitopes on the surface of Mycobacterium tuberculosis infected cells. The potential approaches forward the development of antibody in immunotherapy of tuberculosis have been outlined in the discussion.
Collapse
Affiliation(s)
- Paola A Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mayra Silva-Miranda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.,CONACyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eduardo Campos-Chávez
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Kees C L C M Franken
- Department of Infectious Diseases, University Medical Centre Leiden, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, University Medical Centre Leiden, Leiden, Netherlands
| | - Juraj Ivanyi
- Center for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.,Center for Host-Microbiome Interactions, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2020; 290:127-147. [PMID: 31355495 PMCID: PMC7027847 DOI: 10.1111/imr.12772] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.
Collapse
Affiliation(s)
- Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
12
|
Peri SSS, Sabnani MK, Raza MU, Ghaffari S, Gimlin S, Wawro DD, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor. NANOTECHNOLOGY 2019; 31:085502. [PMID: 31675752 DOI: 10.1088/1361-6528/ab53a7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in plasmonic nanopore technologies have enabled the use of concurrently acquired bimodal optical-electrical data for improved quantification of molecular interactions. This work presents the use of a new plasmonic nanosensor employing self-induced back-action (SIBA) for optical trapping to enable SIBA-actuated nanopore electrophoresis (SANE) for quantifying antibody-ligand interactions. T-cell receptor-like antibodies (TCRmAbs) engineered to target peptide-presenting major histocompatibility complex (pMHC) ligands, representing a model of target ligands presented on the surface of cancer cells, were used to test the SANE sensor's ability to identify specific antibody-ligand binding. Cancer-irrelevant TCRmAbs targeting the same pMHCs were also tested as a control. It was found that the sensor could provide bimodal molecular signatures that could differentiate between antibody, ligand and the complexes that they formed, as well as distinguish between specific and non-specific interactions. Furthermore, the results suggested an interesting phenomenon of increased antibody-ligand complex bound fraction detected by the SANE sensor compared to that expected for corresponding bulk solution concentrations. A possible physical mechanism and potential advantages for the sensor's ability to augment complex formation near its active sensing volume at concentrations lower than the free solution equilibrium binding constant (K D ) are discussed.
Collapse
Affiliation(s)
- Sai Santosh Sasank Peri
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
14
|
He Q, Liu Z, Liu Z, Lai Y, Zhou X, Weng J. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol 2019; 12:99. [PMID: 31521180 PMCID: PMC6744646 DOI: 10.1186/s13045-019-0788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has been regarded as the most significant scientific breakthrough of 2013, and antibody therapy is at the core of this breakthrough. Despite significant success achieved in recent years, it is still difficult to target intracellular antigens of tumor cells with traditional antibodies, and novel therapeutic strategies are needed. T cell receptor (TCR)-like antibodies comprise a novel family of antibodies that can recognize peptide/MHC complexes on tumor cell surfaces. TCR-like antibodies can execute specific and significant anti-tumor immunity through several distinct molecular mechanisms, and the success of this type of antibody therapy in melanoma, leukemia, and breast, colon, and prostate tumor models has excited researchers in the immunotherapy field. Here, we summarize the generation strategy, function, and molecular mechanisms of TCR-like antibodies described in publications, focusing on the most significant discoveries.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhaoyu Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuxiong Lai
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
High throughput development of TCR-mimic antibody that targets survivin-2B 80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep 2019; 9:9827. [PMID: 31285464 PMCID: PMC6614450 DOI: 10.1038/s41598-019-46198-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Intracellular tumor-associated antigens are targeted by antibodies known as T-cell receptor mimic antibodies (TCRm-Abs), which recognize T-cell epitopes with better stabilities and higher affinities than T-cell receptors. However, TCRm-Abs have been proven difficult to produce using conventional techniques. Here, we developed TCRm-Abs that recognize the survivin-2B-derived nonamer peptide, AYACNTSTL (SV2B80-88), presented on HLA-A*24 (SV2B80-88/HLA-A*24) from immunized mice by using a fluorescence-activated cell sorting-based antigen-specific plasma cells isolation method combined with a high-throughput single-cell-based immunoglobulin-gene-cloning technology. This approach yielded a remarkable efficiency in generating candidate antibody clones that recognize SV2B80-88/HLA-A*24. The screening of the antibody clones for their affinity and ability to bind key amino-acid residues within the target peptide revealed that one clone, #21-3, specifically recognized SV2B80-88/HLA-A*24 on T2 cells. The specificity of #21-3 was further established through survivin-2B-positive tumor cell lines that exogenously or endogenously express HLA-A*24. A bispecific T-cell engager comprised of #21-3 and anti-CD3 showed specific cytotoxicity towards cells bearing SV2B80-88/HLA-A*24 by recruiting and activating T-cells in vitro. The efficient development of TCRm-Ab overcomes the limitations that hamper antibody-based immunotherapeutic approaches and enables the targeting of intracellular tumor-associated antigens.
Collapse
|
16
|
Targeting the MHC Ligandome by Use of TCR-Like Antibodies. Antibodies (Basel) 2019; 8:antib8020032. [PMID: 31544838 PMCID: PMC6640717 DOI: 10.3390/antib8020032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide–major histocompatibility molecule (pMHC) complexes are often referred to as “TCR-like” mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use.
Collapse
|
17
|
Xu Y, Salazar GT, Zhang N, An Z. T-cell receptor mimic (TCRm) antibody therapeutics against intracellular proteins. Antib Ther 2019; 2:22-32. [PMID: 33928218 PMCID: PMC7990144 DOI: 10.1093/abt/tbz001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
T-cell receptor mimic (TCRm) antibodies combine the capacity of a T cell to target intracellular antigens with other capacities unique to antibodies. Neoantigens are abnormal proteins that arise as a consequence of somatic mutations. Technological advances promote the development of neoantigen-targeting therapies including TCRm antibody therapies. This review summarizes key characteristics of TCRm antibodies, in particular those targeting neoantigens, and further introduces discussion of obstacles that must be overcome to advance TCRm therapeutics.
Collapse
Affiliation(s)
- Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Vdovin AS, Bykova NA, Efimov GA. T Lymphocytes with Modified Specificity in the Therapy of Malignant Diseases. Mol Biol 2017. [DOI: 10.1134/s0026893317060164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Trenevska I, Li D, Banham AH. Therapeutic Antibodies against Intracellular Tumor Antigens. Front Immunol 2017; 8:1001. [PMID: 28868054 PMCID: PMC5563323 DOI: 10.3389/fimmu.2017.01001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8-10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I) molecules. These tumor-associated peptide-MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm) or T-cell receptor (TCR)-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.
Collapse
Affiliation(s)
- Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
20
|
Li D, Bentley C, Anderson A, Wiblin S, Cleary KLS, Koustoulidou S, Hassanali T, Yates J, Greig J, Nordkamp MO, Trenevska I, Ternette N, Kessler BM, Cornelissen B, Cragg MS, Banham AH. Development of a T-cell Receptor Mimic Antibody against Wild-Type p53 for Cancer Immunotherapy. Cancer Res 2017; 77:2699-2711. [PMID: 28363997 DOI: 10.1158/0008-5472.can-16-3247] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is widely dysregulated in cancer and represents an attractive target for immunotherapy. Because of its intracellular localization, p53 is inaccessible to classical therapeutic monoclonal antibodies, an increasingly successful class of anticancer drugs. However, peptides derived from intracellular antigens are presented on the cell surface in the context of MHC I and can be bound by T-cell receptors (TCR). Here, we report the development of a novel antibody, T1-116C, that acts as a TCR mimic to recognize an HLA-A*0201-presented wild-type p53 T-cell epitope, p5365-73(RMPEAAPPV). The antibody recognizes a wide range of cancers, does not bind normal peripheral blood mononuclear cells, and can activate immune effector functions to kill cancer cells in vitroIn vivo, the antibody targets p5365-73 peptide-expressing breast cancer xenografts, significantly inhibiting tumor growth. This represents a promising new agent for future cancer immunotherapy. Cancer Res; 77(10); 2699-711. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunophenotyping
- Immunotherapy
- Mice
- Molecular Mimicry
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Protein Binding
- Protein Multimerization
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Burden/drug effects
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Carol Bentley
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah Wiblin
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kirstie L S Cleary
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Sofia Koustoulidou
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tasneem Hassanali
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenna Yates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenny Greig
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Marloes Olde Nordkamp
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
21
|
Li D, Bentley C, Yates J, Salimi M, Greig J, Wiblin S, Hassanali T, Banham AH. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies. PLoS One 2017; 12:e0176642. [PMID: 28448627 PMCID: PMC5407768 DOI: 10.1371/journal.pone.0176642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/13/2017] [Indexed: 01/30/2023] Open
Abstract
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.
Collapse
Affiliation(s)
- Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- * E-mail: (AHB); (DL)
| | - Carol Bentley
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenna Yates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Maryam Salimi
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenny Greig
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah Wiblin
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Tasneem Hassanali
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- * E-mail: (AHB); (DL)
| |
Collapse
|
22
|
Chang AY, Gejman RS, Brea EJ, Oh CY, Mathias MD, Pankov D, Casey E, Dao T, Scheinberg DA. Opportunities and challenges for TCR mimic antibodies in cancer therapy. Expert Opin Biol Ther 2016; 16:979-87. [PMID: 27094818 PMCID: PMC4936943 DOI: 10.1080/14712598.2016.1176138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) are potent cancer therapeutic agents, but exclusively recognize cell-surface targets whereas most cancer-associated proteins are found intracellularly. Hence, potential cancer therapy targets such as over expressed self-proteins, activated oncogenes, mutated tumor suppressors, and translocated gene products are not accessible to traditional mAb therapy. An emerging approach to target these epitopes is the use of TCR mimic mAbs (TCRm) that recognize epitopes similar to those of T cell receptors (TCR). AREAS COVERED TCRm antigens are composed of a linear peptide sequence derived from degraded proteins and presented in the context of cell-surface MHC molecules. We discuss how the nature of the TCRm epitopes provides both advantages (absolute tumor specificity and access to a new universe of important targets) and disadvantages (low density, MHC restriction, MHC down-regulation, and cross-reactive linear epitopes) to conventional mAb therapy. We will also discuss potential solutions to these obstacles. EXPERT OPINION TCRm combine the specificity of TCR recognition with the potency, pharmacologic properties, and versatility of mAbs. The structure and presentation of a TCRm epitope has important consequences related to the choice of targets, mAb design, available peptides and MHC subtype restrictions, possible cross-reactivity, and therapeutic activity.
Collapse
Affiliation(s)
- Aaron Y. Chang
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Ron S. Gejman
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Elliott J. Brea
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Claire Y. Oh
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | | | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - David A. Scheinberg
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| |
Collapse
|
23
|
Dhanik A, R. Kirshner J, MacDonald D, Thurston G, C. Lin H, J. Murphy A, Zhang W. In-silico discovery of cancer-specific peptide-HLA complexes for targeted therapy. BMC Bioinformatics 2016; 17:286. [PMID: 27439771 PMCID: PMC4955262 DOI: 10.1186/s12859-016-1150-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) Class I molecules bind to peptide fragments of proteins degraded inside the cell and display them on the cell surface. We are interested in peptide-HLA complexes involving peptides that are derived from proteins specifically expressed in cancer cells. Such complexes have been shown to provide an effective means of precisely targeting cancer cells by engineered T-cells and antibodies, which would be an improvement over current chemotherapeutic agents that indiscriminately kill proliferating cells. An important concern with the targeting of peptide-HLA complexes is off-target toxicity that could occur due to the presence of complexes similar to the target complex in cells from essential, normal tissues. RESULTS We developed a novel computational strategy for identifying potential peptide-HLA cancer targets and evaluating the likelihood of off-target toxicity associated with these targets. Our strategy combines sequence-based and structure-based approaches in a unique way to predict potential off-targets. The focus of our work is on the complexes involving the most frequent HLA class I allele HLA-A*02:01. Using our strategy, we predicted the off-target toxicity observed in past clinical trials. We employed it to perform a first-ever comprehensive exploration of the human peptidome to identify cancer-specific targets utilizing gene expression data from TCGA (The Cancer Genome Atlas) and GTEx (Gene Tissue Expression), and structural data from PDB (Protein Data Bank). We have thus identified a list of 627 peptide-HLA complexes across various TCGA cancer types. CONCLUSION Peptide-HLA complexes identified using our novel strategy could enable discovery of cancer-specific targets for engineered T-cells or antibody based therapy with minimal off-target toxicity.
Collapse
Affiliation(s)
- Ankur Dhanik
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| | | | - Douglas MacDonald
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| | - Hsin C. Lin
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| | - Wen Zhang
- Regeneron Pharmaceuticals Inc, Old Saw Mill River Road, Tarrytown, NY USA
| |
Collapse
|
24
|
Targeting Epstein-Barr virus-transformed B lymphoblastoid cells using antibodies with T-cell receptor-like specificities. Blood 2016; 128:1396-407. [PMID: 27338099 DOI: 10.1182/blood-2016-03-707836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/18/2016] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncovirus associated with several human malignancies including posttransplant lymphoproliferative disease in immunosuppressed patients. We show here that anti-EBV T-cell receptor-like monoclonal antibodies (TCR-like mAbs) E1, L1, and L2 bound to their respective HLA-A*0201-restricted EBV peptides EBNA1562-570, LMP1125-133, and LMP2A426-434 with high affinities and specificities. These mAbs recognized endogenously presented targets on EBV B lymphoblastoid cell lines (BLCLs), but not peripheral blood mononuclear cells, from which they were derived. Furthermore, these mAbs displayed similar binding activities on several BLCLs, despite inherent heterogeneity between different donor samples. A single weekly administration of the naked mAbs reduced splenomegaly, liver tumor spots, and tumor burden in BLCL-engrafted immunodeficient NOD-SCID/Il2rg(-/-) mice. In particular, mice that were treated with the E1 mAb displayed a delayed weight loss and significantly prolonged survival. In vitro, these TCR-like mAbs induced early apoptosis of BLCLs, thereby enhancing their Fc-dependent phagocytic uptake by macrophages. These data provide evidence for TCR-like mAbs as potential therapeutic modalities to target EBV-associated diseases.
Collapse
|
25
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
26
|
Veomett N, Dao T, Liu H, Xiang J, Pankov D, Dubrovsky L, Whitten JA, Park SM, Korontsvit T, Zakhaleva V, Casey E, Curcio M, Kharas MG, O'Reilly RJ, Liu C, Scheinberg DA. Therapeutic efficacy of an Fc-enhanced TCR-like antibody to the intracellular WT1 oncoprotein. Clin Cancer Res 2014; 20:4036-46. [PMID: 24850840 DOI: 10.1158/1078-0432.ccr-13-2756] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE RMFPNAPYL (RMF), a Wilms' tumor gene 1 (WT1)-derived CD8 T-cell epitope presented by HLA-A*02:01, is a validated target for T-cell-based immunotherapy. We previously reported ESK1, a high avidity (Kd < 0.2 nmol/L), fully-human monoclonal antibody (mAb) specific for the WT1 RMF peptide/HLA-A*02:01 complex, which selectively bound and killed WT1(+) and HLA-A*02:01(+) leukemia and solid tumor cell lines. EXPERIMENTAL DESIGN We engineered a second-generation mAb, ESKM, to have enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) function due to altered Fc glycosylation. ESKM was compared with native ESK1 in binding assays, in vitro ADCC assays, and mesothelioma and leukemia therapeutic models and pharmacokinetic studies in mice. ESKM toxicity was assessed in HLA-A*02:01(+) transgenic mice. RESULTS ESK antibodies mediated ADCC against hematopoietic and solid tumor cells at concentrations below 1 μg/mL, but ESKM was about 5- to 10-fold more potent in vitro against multiple cancer cell lines. ESKM was more potent in vivo against JMN mesothelioma, and effective against SET2 AML and fresh ALL xenografts. ESKM had a shortened half-life (4.9 days vs. 6.5 days), but an identical biodistribution pattern in C57BL/6J mice. At therapeutic doses of ESKM, there was no difference in half-life or biodistribution in HLA-A*02:01(+) transgenic mice compared with the parent strain. Importantly, therapeutic doses of ESKM in these mice caused no depletion of total WBCs or hematopoetic stem cells, or pathologic tissue damage. CONCLUSIONS The data provide proof of concept that an Fc-enhanced mAb can improve efficacy against a low-density, tumor-specific, peptide/MHC target, and support further development of this mAb against an important intracellular oncogenic protein.
Collapse
Affiliation(s)
- Nicholas Veomett
- Sloan Kettering Institute; Weill Cornell Medical College, New York, New York
| | | | - Hong Liu
- Eureka Therapeutics Inc., Emeryville, California; and
| | - Jingyi Xiang
- Eureka Therapeutics Inc., Emeryville, California; and
| | | | | | | | | | | | | | | | | | | | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, California; and
| | - David A Scheinberg
- Sloan Kettering Institute; Weill Cornell Medical College, New York, New York;
| |
Collapse
|
27
|
Dahan R, Gebe JA, Preisinger A, James EA, Tendler M, Nepom GT, Reiter Y. Antigen-specific immunomodulation for type 1 diabetes by novel recombinant antibodies directed against diabetes-associates auto-reactive T cell epitope. J Autoimmun 2013; 47:83-93. [PMID: 24090977 DOI: 10.1016/j.jaut.2013.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
The trimolecular complex composed of autoreactive T-cell receptor, MHC class II, and an autoantigenic peptide plays a central role in the activation of pathogenic Islet-specific CD4+ T cells in type 1 diabetes (T1D). We isolated and characterized novel antibodies against autoreactive T-cell epitopes associated with T1D. Our antibodies mimic the specificity of the T-cell receptor (TCR), while binding MHC class II/peptide complexes in an autoantigen peptide specific, MHC-restricted manner. The isolated TCR-like antibodies were directed against the minimal T-cell epitope GAD-555-567 in the context of the HLA-DR4-diabetic-associated molecule. A representative high-affinity TCR-like antibody clone (G3H8) enabled the detection of intra- and extra-cellular DR4/GAD-555-567 complexes in antigen presenting cells. I561M single mutation at the central position (P5) of the GAD-555-567 peptide abolished the binding of G3H8 to the DR4/GAD complex, demonstrating its high fine TCR-like specificity. The G3H8 TCR-like antibody significantly inhibited GAD-555-567 specific, DR4 restricted T-cell response in vitro and in vivo in HLA-DR4 transgenic mice. Our findings constitute a proof-of-concept for the utility of TCR-like antibodies as antigen-specific immunomodulation agents for regulating pathogenic T-cells and suggest that TCR-like antibodies targeting autoreactive MHC class II epitopes are valuable research tools that enable studies related to antigen presentation as well as novel therapeutic agents that may be used to modulate autoimmune disorders such as T1D.
Collapse
Affiliation(s)
- Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
28
|
T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies (Basel) 2013. [DOI: 10.3390/antib2030517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
29
|
Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. J Natl Cancer Inst 2013; 105:202-18. [PMID: 23300219 DOI: 10.1093/jnci/djs521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Applications of trastuzumab are limited to breast cancer patients with high Her2-expressing tumors. We developed a T-cell receptor mimic (TCRm) monoclonal antibody (hereafter called RL1B) that targets the Her2-E75 peptide (residues 369-377)-HLA-A2 complex and examined its effects in Her2-expressing cancer cells. METHODS RL1B binding affinity was determined by surface plasmon resonance and specificity was demonstrated using Her2 antigen-positive and negative tumor cell lines. Immunohistochemistry was used to assess binding to frozen sections of human carcinomas (n = 3). Antitumor activity mediated by RL1B and trastuzumab against Her2(+) tumor cell lines was evaluated using the WST-1 cell viability assay and caspase-3 and poly(ADP-ribose) polymerase cleavage assays. A xenograft mouse model (n = 6 per group) was used to assess RL1B antitumor activity. Mechanisms of RL1B-mediated cytotoxicity were evaluated with confocal microscopy, flow cytometry, and histology. All statistical tests were two-sided. RESULTS RL1B bound with high specificity and affinity to the E75 peptide-HLA-A2 complex in all Her2(+) and HLA-A2(+) cancer cell lines and human carcinomas. Compared with control antibody, RL1B suppressed growth of low Her2-expressing breast tumors in mice (mean volume, RL1B vs control = 241 mm(3) vs 1531 mm(3); P = .0109) and statistically significantly increased mouse survival (P = .0098). It reduced viability compared to control monoclonal antibody-treated cells and statistically significantly increased caspase 3 activation of all Her2(+) carcinoma cell lines tested, whereas trastuzumab induced apoptosis only in high Her2-expressing cancer cells. Mechanisms of RL1B cytotoxicity were associated with antibody internalization and intracellular signaling. CONCLUSION The TCRm RL1B could be a new approach to immunotherapy of Her2-expressing malignancies.
Collapse
Affiliation(s)
- Rinki Jain
- Center for Immunotherapeutic Research and Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | | | | | | |
Collapse
|
30
|
Lei J, Zhang G. Potential antitumor applications of a monoclonal antibody specifically targeting human papilloma virus 16 E7 49-57 peptide. Microbiol Immunol 2012; 56:456-62. [PMID: 22469208 DOI: 10.1111/j.1348-0421.2012.00456.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Our study aims to evaluate whether the approach of TCRm mAb has therapeutic potential against HPV-induced tumors. In the present study, we generated a murine IgG2a mAb 6C10 specifically recognizing HPV-16-E7(49-57) epitope (RAHYNIVTF) in the polypeptides and in complex with a MHC class I molecule. Analysis of the primary structure shows that the 6C10 Ab displays a novel sequence in the CDR of the heavy chain, compared to the sequences in the Kabat database, which suggests the Ab has completed its affinity maturation. The 6C10 Ab can specifically recognize E7 and Trx-E7(30-67) protein in ELISA, and can also specifically bind to T2 cell carrying HPV-16-E7(49-57) peptide. In the TC-1 cell tumor-bearing mouse model, 6C10 exhibits tumor suppression activity when compared to the isotype control Ab. 6C10 Ab has showed tumor-inhibition potency in a mouse model and this Ab may have the prospect of cancer therapy.
Collapse
Affiliation(s)
- Jianqiang Lei
- Department of Vaccine R&D, Shanghai Zerun Biotechnology, 1399 Zhangheng Road, Zhangjiang, Pudong, Shanghai 201203, China
| | | |
Collapse
|
31
|
Weidanz JA, Hildebrand WH. Expanding the targets available to therapeutic antibodies via novel disease-specific markers. Int Rev Immunol 2012; 30:312-27. [PMID: 22053971 DOI: 10.3109/08830185.2011.608136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The development of immunotherapies offers significant promise for clinical applications in cancer and infectious diseases. Here the authors describe a novel, integrated approach to immunotherapy that combines novel technologies to discover and target disease-specific peptide/HLA class I complexes. This unique class of markers makes the entire proteome accessible to antibody reagents and offers unsurpassed specificity for targeting cancerous and infected cells. Arm one of the three-armed approach uses an innovative technology for the efficient, direct discovery of new peptide/HLA class I markers. Arm two applies a powerful and inventive strategy to generate T-cell receptor mimics (TCRms), which are antibodies with exquisite binding specificity for peptide/HLA class I markers, and uses TCRms to validate the specific expression of markers on cancerous and infected cells. The third arm uses TCRms to target and kill diseased cells with high sensitivity and specificity. In summary, the combination of two pioneering technologies expands the repertoire of disease-specific markers that can be targeted by therapeutic antibodies and enables a powerful, integrated approach to HLA-based immunotherapy.
Collapse
Affiliation(s)
- Jon A Weidanz
- Center for Immunotherapeutic Research and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | | |
Collapse
|
32
|
Abstract
Tumour and virus-infected cells are recognised by CD8+ cytotoxic T cells that, in response, are activated to eliminate these cells. In order to be activated, the clonotypic T-cell receptor (TCR) needs to encounter a specific peptide antigen presented by the membrane surface major histocompatibility complex (MHC) molecule. Cells that have undergone malignant transformation or viral infection present peptides derived from tumour-associated antigens or viral proteins on their MHC class I molecules. Therefore, disease-specific MHC-peptide complexes are desirable targets for immunotherapeutic approaches. One such approach transforms the unique fine specificity but low intrinsic affinity of TCRs to MHC-peptide complexes into high-affinity soluble antibody molecules endowed with a TCR-like specificity towards tumour or viral epitopes. These antibodies, termed TCR-like antibodies, are being developed as a new class of immunotherapeutics that can target tumour and virus-infected cells and mediate their specific killing. In addition to their therapeutic capabilities, TCR-like antibodies are being developed as diagnostic reagents for cancer and infectious diseases, and serve as valuable research tools for studying MHC class I antigen presentation.
Collapse
|
33
|
Tassev DV, Cheng M, Cheung NKV. Retargeting NK92 cells using an HLA-A2-restricted, EBNA3C-specific chimeric antigen receptor. Cancer Gene Ther 2011; 19:84-100. [PMID: 21979579 DOI: 10.1038/cgt.2011.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in adoptive cell immunotherapy have led to several promising options for cancer patients. Single-chain variable fragments (scFvs) were isolated from a human phage display library by panning on recombinant human leukocyte antigen (HLA)-A2-peptide complexes. A scFv (EBNA Clone 315) specific for HLA-A2 carrying a 10 amino acid peptide (LLDFVRFMGV) derived from the Epstein-Barr virus latent protein EBNA3C was fully characterized. EBNA Clone 315 displayed exquisite specificity toward its targeted T-cell epitope (TCE) and did not cross-react with the free peptide, HLA-A2 complexes, which carried irrelevant peptides, or HLA-A2(-) cells. Furthermore, after engineering into a scFv-Fc fusion protein, we were able to determine its affinity, detection sensitivity, and ability to induce antibody-dependent cellular cytotoxicity (ADCC). As a proof-of-principle, a chimeric antigen receptor (CAR) version of EBNA Clone 315 was used to reprogram NK92MI cells. CAR-expressing NK92MI cells showed highly specific and potent cytotoxicity toward the targeted TCE, with detection sensitivity of approximately 25 molecules and cytolytic capacity threefold greater than scFv-Fc-mediated ADCC. For the first time, we show the successful reprogramming of non-T cells toward a specific TCE using a CAR.
Collapse
Affiliation(s)
- D V Tassev
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
34
|
An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 2011; 117:4262-72. [PMID: 21296998 DOI: 10.1182/blood-2010-07-299248] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PR1 (VLQELNVTV) is a human leukocyte antigen-A2 (HLA-A2)-restricted leukemia-associated peptide from proteinase 3 (P3) and neutrophil elastase (NE) that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of acute myeloid leukemia (AML). We report a novel T-cell receptor (TCR)-like immunoglobulin G2a (IgG2a) antibody (8F4) with high specific binding affinity (dissociation constant [K(D)] = 9.9nM) for a combined epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes (P = .046). 8F4 mediated complement-dependent cytolysis of AML blasts and Lin(-)CD34(+)CD38(-) leukemia stem cells (LSCs) but not normal leukocytes (P < .005). Although PR1 expression was similar on LSCs and hematopoietic stem cells, 8F4 inhibited AML progenitor cell growth, but not normal colony-forming units from healthy donors (P < .05). This study shows that 8F4, a novel TCR-like antibody, binds to a conformational epitope of the PR1/HLA-A2 complex on the cell surface and mediates specific lysis of AML, including LSCs. Therefore, this antibody warrants further study as a novel approach to targeting leukemia-initiating cells in patients with AML.
Collapse
|
35
|
Verma B, Jain R, Caseltine S, Rennels A, Bhattacharya R, Markiewski MM, Rawat A, Neethling F, Bickel U, Weidanz JA. TCR Mimic Monoclonal Antibodies Induce Apoptosis of Tumor Cells via Immune Effector-Independent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2011; 186:3265-76. [DOI: 10.4049/jimmunol.1002376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Verma B, Hawkins OE, Neethling FA, Caseltine SL, Largo SR, Hildebrand WH, Weidanz JA. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 2010; 59:563-73. [PMID: 19779714 PMCID: PMC11031085 DOI: 10.1007/s00262-009-0774-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cancer Vaccines/therapeutic use
- DEAD-box RNA Helicases/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Nude
- Molecular Mimicry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Bhavna Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
| | - Oriana E. Hawkins
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | | | | | | | - William H. Hildebrand
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jon A. Weidanz
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
- Receptor Logic, Inc, Abilene, TX 79601 USA
| |
Collapse
|
37
|
Wahl A, Schafer F, Bardet W, Hildebrand WH. HLA class I molecules reflect an altered host proteome after influenza virus infection. Hum Immunol 2010; 71:14-22. [PMID: 19748539 DOI: 10.1016/j.humimm.2009.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 12/01/2022]
Abstract
Class I HLA sample and display peptides from thousands of endogenous proteins at the cell surface. During infection, the influenza virus modifies the host cell proteome by triggering host antiviral responses, hijacking host processes, and inhibiting host mRNA processing. In turn, the catalog of HLA class I peptides that decorate the surface of an infected cell is positioned to reflect an altered host cell proteome. To understand the host-encoded peptides presented by class I molecules after influenza infection, we compared by mass spectrometry (MS) the peptides eluted from the HLA of naive and infected cells. We identified 20 peptide ligands unique to infected cells and 347 peptides with increased presentation after infection. Infection with different influenza strains demonstrated that proteome changes are predominantly strain-specific, with few individual cellular interactions observed for multiple viral strains. Modeling by pathway analysis, however, revealed that strain specific host peptide changes represent different routes to the same destination; host changes mediated by influenza are found predominantly clustered around HLA-B, ACTB, HSP90AB1, CDK2, and ANXA2. The class I HLA proteome scanning of influenza-infected cells therefore indicates how divergent strains of influenza pursue alternate routes to access the same host cell processes.
Collapse
Affiliation(s)
- Angela Wahl
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
38
|
Verma B, Neethling FA, Caseltine S, Fabrizio G, Largo S, Duty JA, Tabaczewski P, Weidanz JA. TCR mimic monoclonal antibody targets a specific peptide/HLA class I complex and significantly impedes tumor growth in vivo using breast cancer models. THE JOURNAL OF IMMUNOLOGY 2010; 184:2156-65. [PMID: 20065111 DOI: 10.4049/jimmunol.0902414] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our laboratory has developed a process for generating mAbs with selectivity to unique peptides in the context of MHC molecules. Recently, we reported that RL4B, an mAb that we have called a TCR mimic (TCRm) because it recognizes peptide in the context of MHC, has cytotoxic activity in vitro and prevented growth of tumor cells in a prophylactic setting. When presented in the context of HLA-A2, RL4B TCRm recognizes the peptide GVLPALPQV derived from human chorionic gonadotropin (hCG)-beta. In this study, we show that RL4B TCRm has strong binding affinity for the GVLPALPQV peptide/HLA-A2 epitope and fine binding specificity for cells that express endogenous hCGbeta Ag and HLA-A2. In addition, suppression of tumor growth with RL4B TCRm was observed in orthotopic models for breast cancer. Using two aggressive human tumor cell lines, MDA-MB-231 and MCF-7, we provide evidence that RL4B TCRm significantly retards tumor growth, supporting a possible role for TCRm agents in therapeutic settings. Moreover, tumors in mice responded to RL4B TCRm therapy in a dose-dependent manner, eliminating tumors at the highest dose. RL4B TCRm strongly detects the hCGbeta peptide/HLA-A2 epitope in human primary breast tumor tissue, but does not react or reacts weakly with normal breast tissue from the same patient. These results further illustrate the selective nature of TCRm Abs and the clinical relevance of the GVLPALPQV peptide/HLA-A2 epitope expression in tumor cells, because they provide the first evidence that Abs that mimic the TCR can be used to markedly reduce and suppress tumor growth.
Collapse
Affiliation(s)
- Bhavna Verma
- Center for Immunotherapeutic Research, School of Pharmacy, Texas Tech University Health Sciences Center, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Anikeeva N, Mareeva T, Liu W, Sykulev Y. Can oligomeric T-cell receptor be used as a tool to detect viral peptide epitopes on infected cells? Clin Immunol 2008; 130:98-109. [PMID: 18845488 DOI: 10.1016/j.clim.2008.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/19/2008] [Indexed: 11/25/2022]
Abstract
We have utilized soluble HIV Gag-specific T-cell receptor (TCR) D3 with low affinity and TCR-like antibody 25-D1.16 recognizing its natural peptide-MHC (pMHC) ligand with high affinity to determine how affinity and off-rate of the receptor-pMHC interactions affect the sensitivity of pMHC detection on the cell surface. We found that with soluble TCR cognate pMHCs can be detected only at relatively high cell surface densities when the TCR was oligomerized using either Streptavidin or quantum dot (QD) scaffolds. While the higher affinity probe led to a greater sensitivity of pMHC detection, monomers and oligomers of the probe showed essentially the same detection limit, which is restricted by the sensitivity of standard flow cytometry technique. We have also shown that imaging of QD/TCR specifically bound to cognate pMHC on the cell surface yielded a very bright fluorescent signal that can enhance the sensitivity of viral peptide detection on infected cells.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology and Kimmel Cancer Center, BLSB 650, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
40
|
Neethling FA, Ramakrishna V, Keler T, Buchli R, Woodburn T, Weidanz JA. Assessing vaccine potency using TCRmimic antibodies. Vaccine 2008; 26:3092-102. [DOI: 10.1016/j.vaccine.2008.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Hawkins OE, Vangundy RS, Eckerd AM, Bardet W, Buchli R, Weidanz JA, Hildebrand WH. Identification of breast cancer peptide epitopes presented by HLA-A*0201. J Proteome Res 2008; 7:1445-57. [PMID: 18345606 DOI: 10.1021/pr700761w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellular immune mechanisms detect and destroy cancerous and infected cells via the human leukocyte antigen (HLA) class I molecules that present peptides of intracellular origin on the surface of all nucleated cells. The identification of novel, tumor-specific epitopes is a critical step in the development of immunotherapeutics for breast cancer. To directly identify peptide epitopes unique to cancerous cells, secreted human class I HLA molecules (sHLA) were constructed by deletion of the transmembrane and cytoplasmic domain of HLA A*0201. The resulting sHLA-A*0201 was transferred and expressed in breast cancer cell lines MCF-7, MDA-MB-231, and BT-20 as well as in the immortal, nontumorigenic cell line MCF10A. Stable transfectants were seeded into bioreactors for production of > 25 mg of sHLA-A*0201. Peptides eluted from affinity purified sHLA were analyzed by mass spectroscopy. Comparative analysis of HLA-A*0201 peptides revealed 5 previously uncharacterized epitopes uniquely presented on breast cancer cells. These peptides were derived from intracellular proteins with either well-defined or putative roles in breast cancer development and progression: Cyclin Dependent Kinase 2 (Cdk2), Ornithine Decarboxylase (ODC1), Kinetochore Associated 2 (KNTC2 or HEC1), Macrophage Migration Inhibitory Factor (MIF), and Exosome Component 6 (EXOSC6). Cellular recognition of the MIF, KNTC2, EXOSC6, and Cdk2 peptides by circulating CD8+ cells was demonstrated by tetramer staining and IFN-gamma ELISPOT. The identification and characterization of peptides unique to the class I of breast cancer cells provide putative targets for the development of immune diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Oriana E Hawkins
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, Pure Protein, LLC, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Wahl A, Weidanz J, Hildebrand W. Direct class I HLA antigen discovery to distinguish virus-infected and cancerous cells. Expert Rev Proteomics 2007; 3:641-52. [PMID: 17181478 DOI: 10.1586/14789450.3.6.641] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Class I human leukocyte antigen molecules are nature's proteome-scanning chips, presenting thousands of endogenously loaded peptides on the surface of virtually every cell in the body. Cytotoxic T cells survey the class I human leukocyte antigen peptide cargo presented, recognize peptides unique to unhealthy cells and destroy diseased cells. A precise understanding of how class I molecules distinguish diseased cells is positioned to drive immune-based diagnostics, therapies and vaccines. When identifying epitopes unique to unhealthy cells, the most experimentally direct approach is to examine the class I-presented peptides of infected/cancerous cells. Here we discuss the strategies adapted for protein production, protein/peptide purification, peptide separation and for maintaining experimental reproducibility during the direct characterization of class I human leukocyte antigen peptides.
Collapse
Affiliation(s)
- Angela Wahl
- University of Oklahoma, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 NE, 10 Street, BRC Room 317, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|