1
|
Magari M, Nishioka M, Hari T, Ogawa S, Takahashi K, Hatano N, Kanayama N, Futami J, Tokumitsu H. The immunoreceptor SLAMF8 promotes the differentiation of follicular dendritic cell-dependent monocytic cells with B cell-activating ability. FEBS Lett 2022; 596:2659-2667. [PMID: 35953458 DOI: 10.1002/1873-3468.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 07/30/2022] [Indexed: 11/06/2022]
Abstract
Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analyzed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin β receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation. FDMCs accelerated GC-phenotype proliferation in cultured B cells, suggesting that they are capable of promoting GC responses. Furthermore, a pulldown assay showed that SLAMF8-Fc could bind to SLAMF8-His. Overall, the homophilic interaction of SLAMF8 promotes FDMC differentiation and SLAMF8 might act as a novel regulator of GC responses by regulating FDMC differentiation.
Collapse
Affiliation(s)
- Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Miku Nishioka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Tomomi Hari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Ogawa
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kaho Takahashi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Junichiro Futami
- Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
2
|
Nakagawa R, Calado DP. Positive Selection in the Light Zone of Germinal Centers. Front Immunol 2021; 12:661678. [PMID: 33868314 PMCID: PMC8044421 DOI: 10.3389/fimmu.2021.661678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Germinal centers (GCs) are essential sites for the production of high-affinity antibody secreting plasma cells (PCs) and memory-B cells (MBCs), which form the framework of vaccination. Affinity maturation and permissive selection in GCs are key for the production of PCs and MBCs, respectively. For these purposes, GCs positively select “fit” cells in the light zone of the GC and instructs them for one of three known B cell fates: PCs, MBCs and persistent GC-B cells as dark zone entrants. In this review, we provide an overview of the positive selection process and discuss its mechanisms and how B cell fates are instructed.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Immunity and Cancer Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Zhu C, Shi Y, You J. Immune Cell Connection by Tunneling Nanotubes: The Impact of Intercellular Cross-Talk on the Immune Response and Its Therapeutic Applications. Mol Pharm 2021; 18:772-786. [PMID: 33529022 DOI: 10.1021/acs.molpharmaceut.0c01248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct intercellular communication is an important prerequisite for the development of multicellular organisms, the regeneration of tissue, and the maintenance of various physiological activities. Tunnel nanotubes (TNTs), which have diameters of approximately 50-1500 nm and lengths of up to several cell diameters, can connect cells over long distances and have emerged as one of the most important recently discovered types of efficient communication between cells. Moreover, TNTs can also directly transfer organelles, vehicles, proteins, genetic material, ions, and small molecules from one cell to adjacent and even distant cells. However, the mechanism of intercellular communication between various immune cells within the complex immune system has not been fully elucidated. Studies in the past decades have confirmed the existence of TNTs in many types of cells, especially in various kinds of immune cells. TNTs display different structural and functional characteristics between and within different immunocytes, playing a major role in the transmission of signals across various kinds of immune cells. In this review, we introduce the discovery and structure of TNTs, as well as their different functional properties within different immune cells. We also discuss the roles of TNTs in potentiating the immune response and their potential therapeutic applications.
Collapse
Affiliation(s)
- Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
4
|
Ogawa S, Matsuoka Y, Takada M, Matsui K, Yamane F, Kubota E, Yasuhara S, Hieda K, Kanayama N, Hatano N, Tokumitsu H, Magari M. Interleukin 34 (IL-34) cell-surface localization regulated by the molecular chaperone 78-kDa glucose-regulated protein facilitates the differentiation of monocytic cells. J Biol Chem 2018; 294:2386-2396. [PMID: 30573681 DOI: 10.1074/jbc.ra118.006226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Interleukin 34 (IL-34) constitutes a cytokine that shares a common receptor, colony-stimulating factor-1 receptor (CSF-1R), with CSF-1. We recently identified a novel type of monocytic cell termed follicular dendritic cell-induced monocytic cells (FDMCs), whose differentiation depended on CSF-1R signaling through the IL-34 produced from a follicular dendritic cell line, FL-Y. Here, we report the functional mechanisms of the IL-34-mediated CSF-1R signaling underlying FDMC differentiation. CRIPSR/Cas9-mediated knockout of the Il34 gene confirmed that the ability of FL-Y cells to induce FDMCs completely depends on the IL-34 expressed by FL-Y cells. Transwell culture experiments revealed that FDMC differentiation requires a signal from a membrane-anchored form of IL-34 on the FL-Y cell surface, but not from a secreted form, in a direct interaction between FDMC precursor cells and FL-Y cells. Furthermore, flow cytometric analysis using an anti-IL-34 antibody indicated that IL-34 was also expressed on the FL-Y cell surface. Thus, we explored proteins interacting with IL-34 in FL-Y cells. Mass spectrometry analysis and pulldown assay identified that IL-34 was associated with the molecular chaperone 78-kDa glucose-regulated protein (GRP78) in the plasma membrane fraction of FL-Y cells. Consistent with this finding, GRP78-heterozygous FL-Y cells expressed a lower level of IL-34 protein on their cell surface and exhibited a reduced competency to induce FDMC differentiation compared with the original FL-Y cells. These results indicated a novel GRP78-dependent localization and specific function of IL-34 in FL-Y cells related to monocytic cell differentiation.
Collapse
Affiliation(s)
- Sayaka Ogawa
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Yukiko Matsuoka
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Miho Takada
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kazue Matsui
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Fumihiro Yamane
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Eri Kubota
- the Department of Applied Chemistry and Biotechnology, Faculty of Engineering, and
| | - Shiori Yasuhara
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kentaro Hieda
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Naoki Kanayama
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Naoya Hatano
- the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Magari
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology, .,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Aungier SR, Ohmori H, Clinton M, Mabbott NA. MicroRNA-100-5p indirectly modulates the expression of Il6, Ptgs1/2 and Tlr4 mRNA in the mouse follicular dendritic cell-like cell line, FL-Y. Immunology 2015; 144:34-44. [PMID: 24944008 PMCID: PMC4264908 DOI: 10.1111/imm.12342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 01/09/2023] Open
Abstract
Follicular dendritic cells (FDC) are important stromal cells within the B-cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes that they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs that are approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study, in vivo and in vitro systems were used to identify microRNAs that were potentially expressed by FDC. Constitutive lymphotoxin-β receptor (LTβR) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that accompanied LTβR-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 mRNA in this cell line. The expression of Il6, Ptgs1/2 and Tlr4 by FDC play important roles in regulating GC size and promoting high-affinity antibody responses, so it is plausible that mmu-miR-100-5p may help to regulate the expression of these genes during GC reactions.
Collapse
Affiliation(s)
- Susan R Aungier
- The Roslin Institute and R(D)SVS, University of EdinburghMidlothian, UK
| | - Hitoshi Ohmori
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and TechnologyOkayama, Japan
| | - Michael Clinton
- The Roslin Institute and R(D)SVS, University of EdinburghMidlothian, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of EdinburghMidlothian, UK
| |
Collapse
|
6
|
Yamane F, Nishikawa Y, Matsui K, Asakura M, Iwasaki E, Watanabe K, Tanimoto H, Sano H, Fujiwara Y, Stanley ER, Kanayama N, Mabbott NA, Magari M, Ohmori H. CSF-1 receptor-mediated differentiation of a new type of monocytic cell with B cell-stimulating activity: its selective dependence on IL-34. J Leukoc Biol 2014; 95:19-31. [PMID: 24052571 PMCID: PMC3868188 DOI: 10.1189/jlb.0613311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
With the use of a mouse FDC line, FL-Y, we have been analyzing roles for FDCs in controlling B cell fate in GCs. Beside these regulatory functions, we fortuitously found that FL-Y cells induced a new type of CD11b⁺ monocytic cells (F4/80⁺, Gr-1⁻, Ly6C⁻, I-A/E(-/lo), CD11c⁻, CD115⁺, CXCR4⁺, CCR2⁺, CX₃CR1⁻) when cultured with a Lin⁻c-kit⁺ population from mouse spleen cells. The developed CD11b⁺ cells shared a similar gene-expression profile to mononuclear phagocytes and were designated as FDMCs. Here, we describe characteristic immunological functions and the induction mechanism of FDMCs. Proliferation of anti-CD40 antibody-stimulated B cells was markedly accelerated in the presence of FDMCs. In addition, the FDMC-activated B cells efficiently acquired GC B cell-associated markers (Fas and GL-7). We observed an increase of FDMC-like cells in mice after immunization. On the other hand, FL-Y cells were found to produce CSF-1 as well as IL-34, both of which are known to induce development of macrophages and monocytes by binding to the common receptor, CSF-1R, expressed on the progenitors. However, we show that FL-Y-derived IL-34, but not CSF-1, was selectively responsible for FDMC generation using neutralizing antibodies and RNAi. We also confirmed that FDMC generation was strictly dependent on CSF-1R. To our knowledge, a CSF-1R-mediated differentiation process that is intrinsically specific for IL-34 has not been reported. Our results provide new insights into understanding the diversity of IL-34 and CSF-1 signaling pathways through CSF-1R.
Collapse
Affiliation(s)
- Fumihiro Yamane
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Yumiko Nishikawa
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Kazue Matsui
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Miki Asakura
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Eriko Iwasaki
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Koji Watanabe
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Hikaru Tanimoto
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Hiroki Sano
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Yuki Fujiwara
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA; and
| | - Naoki Kanayama
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - Masaki Magari
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan; ,Correspondence: Dept. of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan. E-mail: (M.M.) or (H.O.)
| | - Hitoshi Ohmori
- Department of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan; ,Correspondence: Dept. of Bioscience and Biotechnology, Okayama University Graduate School of Natural Science and Technology, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan. E-mail: (M.M.) or (H.O.)
| |
Collapse
|
7
|
Helminth protein vaccine induced follicular T helper cell for enhancement of humoral immunity against Schistosoma japonicum. BIOMED RESEARCH INTERNATIONAL 2013; 2013:798164. [PMID: 24308005 PMCID: PMC3838807 DOI: 10.1155/2013/798164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022]
Abstract
Protein vaccines combined with adjuvants have been widely used to induce immune responses, especially the humoral immune response, against molecular targets including parasites. Follicular T helper (Tfh) cells are the specialized providers of B-cell help, however, the induction of Tfh cells in protein vaccination has been rarely studied. Here, we report that the Schistosoma japonicum recombinant protein (SjGST-32) combined with tacrolimus (FK506) augmented the induction of Tfh cells, which expressed the canonical markers CXCR5, BCL6, and IL-21, and enhanced the humoral immune responses in BALB/c mice. Furthermore, the expression of IL-21R on germinal center (GC) B cells and memory B cells increased in immunized mice, which indicated that IL-21 from the induced Tfh cells interacted with IL-21R for activation of B cells and maintenance of long-lived humoral immunity. Our results suggest that helminth protein vaccine combined with FK506 induces Tfh cell for stimulating humoral immune responses and inducing long-lived humoral immunity.
Collapse
|
8
|
Beraprost enhances production of antigen-specific IgG isotypes without modulating germinal center B cell generation and the affinity maturation. Int Immunopharmacol 2013; 15:735-42. [DOI: 10.1016/j.intimp.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 01/16/2023]
|
9
|
A method for inducing antigen-specific IgG production by in vitro immunization. J Immunol Methods 2012; 386:60-9. [DOI: 10.1016/j.jim.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/22/2012] [Accepted: 08/29/2012] [Indexed: 12/26/2022]
|
10
|
Affiliation(s)
- Gabriel D. Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
11
|
Marzo L, Gousset K, Zurzolo C. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012; 3:72. [PMID: 22514537 PMCID: PMC3322526 DOI: 10.3389/fphys.2012.00072] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023] Open
Abstract
Cell-to-cell communication and exchange of materials are vital processes in multicellular organisms during cell development, cell repair, and cell survival. In neuronal and immunological cells, intercellular transmission between neighboring cells occurs via different complex junctions or synapses. Recently, long distance intercellular connections in mammalian cells called tunneling nanotubes (TNTs) have been described. These structures have been found in numerous cell types and shown to transfer signals and cytosolic materials between distant cells, suggesting that they might play a prominent role in intercellular trafficking. However, these cellular connections are very heterogeneous in both structure and function, giving rise to more questions than answers as to their nature and role as intercellular conduits. To better understand and characterize the functions of TNTs, we have highlighted here the latest discoveries regarding the formation, structure, and role of TNTs in cell-to-cell spreading of various signals and materials. We first gathered information regarding their formation with an emphasis on the triggering mechanisms observed, such as stress and potentially important proteins and/or signaling pathways. We then describe the various types of transfer mechanisms, in relation to signals and cargoes that have been shown recently to take advantage of these structures for intercellular transfer. Because a number of pathogens were shown to use these membrane bridges to spread between cells we also draw attention to specific studies that point toward a role for TNTs in pathogen spreading. In particular we discuss the possible role that TNTs might play in prion spreading, and speculate on their role in neurological diseases in general.
Collapse
Affiliation(s)
- Ludovica Marzo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| | - Karine Gousset
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
| | - Chiara Zurzolo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| |
Collapse
|
12
|
Usui K, Honda SI, Yoshizawa Y, Nakahashi-Oda C, Tahara-Hanaoka S, Shibuya K, Shibuya A. Isolation and characterization of naïve follicular dendritic cells. Mol Immunol 2012; 50:172-6. [DOI: 10.1016/j.molimm.2011.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 11/26/2022]
|
13
|
Magari M, Nishikawa Y, Fujii Y, Nishio Y, Watanabe K, Fujiwara M, Kanayama N, Ohmori H. IL-21–Dependent B Cell Death Driven by Prostaglandin E2, a Product Secreted from Follicular Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4210-8. [DOI: 10.4049/jimmunol.1100934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Mattsson J, Yrlid U, Stensson A, Schön K, Karlsson MCI, Ravetch JV, Lycke NY. Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant. THE JOURNAL OF IMMUNOLOGY 2011; 187:3641-52. [PMID: 21880985 DOI: 10.4049/jimmunol.1101107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.
Collapse
Affiliation(s)
- Johan Mattsson
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Mabbott NA, Kenneth Baillie J, Kobayashi A, Donaldson DS, Ohmori H, Yoon SO, Freedman AS, Freeman TC, Summers KM. Expression of mesenchyme-specific gene signatures by follicular dendritic cells: insights from the meta-analysis of microarray data from multiple mouse cell populations. Immunology 2011; 133:482-98. [PMID: 21635249 DOI: 10.1111/j.1365-2567.2011.03461.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicular dendritic cells (FDC) are an important subset of stromal cells within the germinal centres of lymphoid tissues. They are specialized to trap and retain antigen-containing immune complexes on their surfaces to promote B-cell maturation and immunoglobulin isotype class-switching. However, little is known of the cell types from which FDC originate. To address fundamental questions associated with the relationships between FDC and other cell populations, we took advantage of the growing body of publicly available data for transcriptome analysis. We obtained a large number of gene expression data files from a range of different primary mouse cells and cell lines and subjected these data to network-based cluster analysis using BiolayoutExpress(3D) . Genes with related function clustered together in distinct regions of the graph and enabled the identification of transcriptional networks that underpin the functional activity of distinct cell populations. Several gene clusters were identified that were selectively expressed by cells of mesenchymal lineage and contained classic mesenchymal cell markers and extracellular matrix genes including various collagens, Acta2, Bgn, Fbn1 and Twist1. Our analysis showed that FDC also express highly many of these mesenchyme-associated genes. Promoter analysis of the genes comprising the mesenchymal clusters identified several regulatory motifs that are binding sites for candidate transcription factors previously known to be candidate regulators of mesenchyme-specific genes. Together, these data suggest FDC are a specialized mesenchymal cell population within the germinal centres of lymphoid tissues.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilke G, Steinhauser G, Grün J, Berek C. In silico subtraction approach reveals a close lineage relationship between follicular dendritic cells and BP3(hi) stromal cells isolated from SCID mice. Eur J Immunol 2010; 40:2165-73. [PMID: 20518031 DOI: 10.1002/eji.200940202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organization of the stromal compartments in secondary lymphoid tissue is a prerequisite for an efficient immune reaction. In particular, follicular dendritic cells (FDC) are pivotal for the activation and differentiation of B cells. To investigate the development of FDC, FDC together with tightly associated B cells (FDC networks) were micro-dissected from frozen tissue sections and follicular B cells were sorted by FACS. Using an in silico subtraction approach, gene expression of FDC was determined and compared with that of follicular stromal cells micro-dissected from the spleen of SCID mice. Nearly 90% of the FDC genes were expressed in follicular stromal cells of the SCID mouse, providing further evidence that FDC develop from the residual network of reticular cells. Thus, it suggests that rather minor modifications in the gene expression profile are sufficient for differentiation into mature FDC. The analysis of different immune-deficient mouse strains shows that a complex pattern of gene regulation controls the development of residual stromal cells into mature FDC. The in silico subtraction approach provides a molecular framework within which to determine the diverse roles of FDC in support of B cells and to investigate the differentiation of FDC from their mesenchymal precursor cells.
Collapse
Affiliation(s)
- Gordon Wilke
- Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz-Gemeinschaft, Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 2010; 237:72-89. [PMID: 20727030 DOI: 10.1111/j.1600-065x.2010.00937.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Germinal centers (GCs) are specialized microenvironments formed after infection where activated B cells can mutate their B-cell receptors to undergo affinity maturation. A stringent process of selection allows high affinity, non-self-reactive B cells to become long-lived memory B cells and plasma cells. While the precise mechanism of selection is still poorly understood, the last decade has advanced our understanding of the role of T cells and follicular dendritic cells (FDCs) in GC B-cell formation and selection. T cells and non-T-cell-derived CD40 ligands on FDCs are essential for T-dependent (TD) and T-independent GC formation, respectively. TD-GC formation requires Bcl-6-expressing T cells capable of signaling through SAP, which promotes formation of stable T:B conjugates. By contrast, differentiation of B blasts along the extrafollicular pathway is less dependent on SAP. T-follicular helper (Tfh) cell-derived CD40L, interleukin-21, and interleukin-4 play important roles in GC B-cell proliferation, survival, and affinity maturation. A role for FDC-derived integrin signals has also emerged: GC B cells capable of forming an immune synapse with FDCs have a survival advantage. This emerges as a powerful mechanism to ensure death of B cells that bind self-reactive antigen, which would not normally be presented on FDCs.
Collapse
Affiliation(s)
- Carola G Vinuesa
- John Curtin School of Medical Research and Australian Phenomics Facility, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
18
|
Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H, Agace WW, Fagarasan S. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 2010; 33:71-83. [PMID: 20643338 DOI: 10.1016/j.immuni.2010.07.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/13/2010] [Accepted: 05/11/2010] [Indexed: 12/11/2022]
Abstract
In the Peyer's patches (PPs), germinal centers (GCs) are chronically induced by bacteria and are the major sites for generation of gut immunoglobulin A (IgA) immune responses. Whether follicular dendritic cells (FDCs) within the GCs directly contribute to the IgA production in PPs is unknown. We showed here that direct stimulation of FDCs by bacterial products and retinoic acid synergistically enhanced the expression of the chemokine CXCL13, the survival factor BAFF, and molecules that facilitate the secretion and activation of the cytokine TGF-beta1. A reduced production of these molecules by PP FDCs associated with deficiencies in the Toll-like receptor pathway or vitamin A resulted in decreased numbers of GC B cells and defective generation of IgA(+) B cells within PP GCs. Our data indicate that PP FDCs are conditioned by environmental stimuli to express key factors for B cell migration, survival, and preferential generation of IgA in gut.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology, RIKEN Yokohama 1-7-22, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Cellular source and molecular form of TNF specify its distinct functions in organization of secondary lymphoid organs. Blood 2010; 116:3456-64. [PMID: 20634375 DOI: 10.1182/blood-2009-10-249177] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secondary lymphoid organs provide a unique microenvironment for generation of immune responses. Using a cell type-specific conditional knockout approach, we have dissected contributions of tumor necrosis factor (TNF) produced by B cells (B-TNF) or T cells (T-TNF) to the genesis and homeostatic organization of secondary lymphoid organs. In spleen, lymph nodes and Peyer patches, the cellular source of TNF, and its molecular form (soluble versus membrane-bound) appeared distinct. In spleen, in addition to major B-TNF signal, a complementary T-TNF signal contributed to the microstructure. In contrast, B-TNF predominantly controlled the development of follicular dendritic cells and B-cell follicles in Peyer patches. In lymph nodes, cooperation between TNF expressed by B and T cells was necessary for the maintenance of microarchitecture and for generation of an efficient humoral immune response. Unexpectedly, soluble but not membrane TNF expressed by B cells was essential for the organization of the secondary lymphoid organs. Thus, the maintenance of each type of secondary lymphoid organ is orchestrated by distinct contributions of membrane-bound and soluble TNF produced by B and T lymphocytes.
Collapse
|
20
|
Allen CDC, Cyster JG. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 2008; 20:14-25. [PMID: 18261920 PMCID: PMC2366796 DOI: 10.1016/j.smim.2007.12.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 12/06/2007] [Indexed: 12/11/2022]
Abstract
Follicular dendritic cells (FDCs) were identified decades ago by their ability to retain immune complexes and more recent findings indicate that they are a source of B cell attractants and trophic factors. New imaging studies have shown that B cells closely associate with their dendritic processes during migration. Here we will review the properties of these specialized follicular stromal cells and provide an update on the requirements for their maturation into phenotypically distinct cells within germinal center light and dark zones. We will then discuss current understanding of how they help support the B cell immune response.
Collapse
Affiliation(s)
- Christopher D C Allen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, 513 Parnassus Avenue, Box 0414, University of California, San Francisco, CA 94143-0414, USA.
| | | |
Collapse
|
21
|
Murakami T, Chen X, Hase K, Sakamoto A, Nishigaki C, Ohno H. Splenic CD19-CD35+B220+ cells function as an inducer of follicular dendritic cell network formation. Blood 2007; 110:1215-24. [PMID: 17519390 PMCID: PMC1939903 DOI: 10.1182/blood-2007-01-068387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular dendritic cells (FDCs) form a reticular FDC network in the lymphoid follicle that is essential for the retention and presentation of native antigens in the form of antigen-antibody immune complexes (ICs) to B cells during secondary immune response. Although the presence of migrating precursors of FDCs has been hypothesized, their entity has not been elucidated. Here we report the identification of murine splenic CD19(-)CD11c(-)CD35(+)B220(+) cells as an inducer of FDC network formation. We demonstrated that CD19(-)-CD11c(-)CD35(+)B220(+) cells, together with stromal cells, had the remarkable ability to form lymphoid-follicle-like structures that contained B220(+)FDC-M1(+) reticular cells originally derived from CD19(-)-CD11c(-)CD35(+)B220(+) cells in the CD35(+) reticulum. Our results indicate that CD19(-)CD11c(-)CD35(+)B220(+) cells function as an inducer of FDC network formation and that the interaction between CD19(-)CD11c(-)CD35(+)B220(+) cells and stromal cells is required to initiate lymphoid follicle formation.
Collapse
MESH Headings
- Animals
- Antigens, CD19/metabolism
- Cell Differentiation
- Cell Lineage
- Dendritic Cells, Follicular/cytology
- Dendritic Cells, Follicular/metabolism
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunophenotyping
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Leukocyte Common Antigens/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Complement 3b/metabolism
- Spleen/cytology
- Stromal Cells/cytology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Takaya Murakami
- Laboratory for Epithelial Immunobiology, Rikagaku Kenkyusho (RIKEN) Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lee IY, Bae YD, Jeoung DI, Kang D, Park CH, Kim SH, Choe J. Prostacyclin production is not controlled by prostacyclin synthase but by cyclooxygenase-2 in a human follicular dendritic cell line, HK. Mol Immunol 2007; 44:3168-72. [PMID: 17337058 DOI: 10.1016/j.molimm.2007.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 01/21/2007] [Accepted: 01/25/2007] [Indexed: 11/29/2022]
Abstract
We have recently demonstrated that human follicular dendritic cells (FDCs) strongly express prostacyclin synthase. The purpose of this study is to investigate the production mechanism of prostacyclin using the established human FDC line, HK. The levels of PGIS protein expression did not vary during the different stages of the cell cycle. We stimulated HK cells with various inflammatory cytokines but, none of the tested stimuli modulated PGIS expression significantly. However, incubation of HK cells with tumor necrosis factor (TNF)-alpha gave rise to a significant increase in the protein level of cyclooxygenase (COX)-2. Furthermore, elevated levels of prostacyclin secretion stimulated by TNF-alpha were markedly down-regulated by indomethacin and a selective COX-2 inhibitor. These results suggest that the production of prostacyclin in FDC is controlled by the regulation of upstream COX-2 but not by terminal PGIS protein production. This study has important implications for the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- In Yong Lee
- Department of Microbiology and Immunology, Kangwon National University College of Medicine, Chunchon, Kangwon 200-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|