1
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. RECENT FINDINGS Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. SUMMARY Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.
Collapse
|
3
|
Lagatie O, Van Dorst B, Stuyver LJ. Identification of three immunodominant motifs with atypical isotype profile scattered over the Onchocerca volvulus proteome. PLoS Negl Trop Dis 2017; 11:e0005330. [PMID: 28125577 PMCID: PMC5295699 DOI: 10.1371/journal.pntd.0005330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/07/2017] [Accepted: 01/14/2017] [Indexed: 01/30/2023] Open
Abstract
Understanding the immune response upon infection with the filarial nematode Onchocerca volvulus and the mechanisms that evolved in this parasite to evade immune mediated elimination is essential to expand the toolbox available for diagnostics, therapeutics and vaccines development. Using high-density peptide microarrays we scanned the proteome-wide linear epitope repertoire in Cameroonian onchocerciasis patients and healthy controls from Southern Africa which led to the identification of 249 immunodominant antigenic peptides. Motif analysis learned that 3 immunodominant motifs, encompassing 3 linear epitopes, are present in 70, 43, and 31 of these peptides, respectively and appear to be scattered over the entire proteome in seemingly non-related proteins. These linear epitopes are shown to have an atypical isotype profile dominated by IgG1, IgG3, IgE and IgM, in contrast to the commonly observed IgG4 response in chronic active helminth infections. The identification of these linear epitope motifs may lead to novel diagnostic development but further evaluation of cross-reactivity against common co-infecting human nematode infections will be needed. Infection with the filarial parasite Onchocerca volvulus is the cause of river blindness. We analyzed the immune response against this parasite in infected individuals in order to identify linear epitopes. Using high-density peptide microarrays we discovered three immunodominant motifs in the Onchocerca volvulus proteome that induce a broad IgG response, but the typical IgG4 immune response against parasites was absent. Our study led to the identification of novel potential epitope sequences that can potentially be used for detection of infection with Onchocerca volvulus.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| | - Bieke Van Dorst
- Janssen Diagnostics, Janssen Pharmaceutica NV, Beerse, Belgium
| | | |
Collapse
|
4
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
5
|
Perraut R, Richard V, Varela ML, Trape JF, Guillotte M, Tall A, Toure A, Sokhna C, Vigan-Womas I, Mercereau-Puijalon O. Comparative analysis of IgG responses to Plasmodium falciparum MSP1p19 and PF13-DBL1α1 using ELISA and a magnetic bead-based duplex assay (MAGPIX®-Luminex) in a Senegalese meso-endemic community. Malar J 2014; 13:410. [PMID: 25326042 PMCID: PMC4221706 DOI: 10.1186/1475-2875-13-410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Background Numerous Plasmodium falciparum antigens elicit humoral responses in humans living in endemic areas. Use of multiplex assays is a convenient approach to monitor the antibody response against multiple antigens, but to integrate multiplex assay-derived data with datasets, generated previously using ELISA, comparative studies are needed. This work compares antibody responses to two P. falciparum antigens monitored using both technologies. Methods The IgG response against the merozoite surface protein-1 PfMSP1p19 and the PF13-DBL1α1 domain of the P. falciparum Erythrocyte Membrane Protein1, expressed by the rosette-forming parasite 3D7/PF13 (PF13), was investigated using ELISA and a MAGPIX®-Luminex duplex assay. Archived plasma samples collected before the rainy season from 217 villagers living in Ndiop, a Senegalese meso-endemic setting, were studied. ROC analysis was used to define the optimal antibody measure readout. Association of antibody levels with protection against clinical malaria was analysed using Poisson regression in a retrospective study from active case detection records performed during the 5.5-month transmission season that followed blood sampling. Results There was a strong positive correlation (P <10-3) between ELISA and MAGPIX®-Luminex-MFI (median fluorescence intensity) values for antibody to PfMSP1p19 (rho = 0.78) and PF13-DBL1α1 (rho = 0.89), with a similar degree of concordance in all age groups. Antibody levels to both antigens were high but displayed a different age-associated pattern. Independent age-adjusted Poisson regression analysis showed a significant association with protection only for IgG responses to MSP1p19 (P <0.01 RR = 0.71 [0.53-0.93]) measured by ELISA. Conclusion The individual ELISA and duplex-MAGPIX assays provide a concordant evaluation of age-associated antibody responses to MSP1p19 and PF13-DBL1α1, irrespective of the formulation of antibody levels (values, ratios or ROC-adjusted figures) but do diverge with regard to the association of antibody levels with clinical protection in age-adjusted models. This may reflect incomplete overlap of the epitopes presented in the two formats. Further development for multiplex assessment of antibody responses to a larger panel of antigens with the robust and cost effective MAGPIX®-Luminex technology is warranted. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-410) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Perraut
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Berger SS, Turner L, Wang CW, Petersen JEV, Kraft M, Lusingu JPA, Mmbando B, Marquard AM, Bengtsson DBAC, Hviid L, Nielsen MA, Theander TG, Lavstsen T. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS One 2013; 8:e69117. [PMID: 23874884 PMCID: PMC3706608 DOI: 10.1371/journal.pone.0069117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs). Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1) are more likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and show that two genetically different parasite lines expressing DC5-PfEMP1 bind PECAM1, and that anti-DC5-specific antibodies inhibit binding of DC5-PfEMP1-expressing parasites to transformed human bone marrow endothelial cells (TrHBMEC). We also show that antibodies against each of the four domains characteristic for DC5 react with native PfEMP1 expressed on the surface of infected erythrocytes, and that some of these antibodies are cross-reactive between the two DC5-containing PfEMP1 molecules tested. Finally, we confirm that anti-DC5 antibodies are acquired early in life by individuals living in malaria endemic areas, that individuals having high levels of these antibodies are less likely to develop febrile malaria episodes and that the antibody levels correlate positively with hemoglobin levels.
Collapse
Affiliation(s)
- Sanne S. Berger
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| | - Louise Turner
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Jens E. V. Petersen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Maria Kraft
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - John P. A. Lusingu
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Bruno Mmbando
- National Institute for Medical Research (NIMR), Tanga Medical Research Centre, Tanga, Tanzania
| | - Andrea M. Marquard
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Dominique B. A. C. Bengtsson
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (TL)
| |
Collapse
|
7
|
Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, Theander TG, Hviid L, Higgins MK, Craig A, Brown A, Jensen ATR. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. THE JOURNAL OF IMMUNOLOGY 2012; 190:240-9. [PMID: 23209327 DOI: 10.4049/jimmunol.1202578] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like β3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.
Collapse
Affiliation(s)
- Anja Bengtsson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1014, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barry AE, Trieu A, Fowkes FJI, Pablo J, Kalantari-Dehaghi M, Jasinskas A, Tan X, Kayala MA, Tavul L, Siba PM, Day KP, Baldi P, Felgner PL, Doolan DL. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics 2011; 10:M111.008326. [PMID: 21825279 PMCID: PMC3226400 DOI: 10.1074/mcp.m111.008326] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2–2.9 years, peaked at 3–4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vigan-Womas I, Guillotte M, Juillerat A, Vallieres C, Lewit-Bentley A, Tall A, Baril L, Bentley GA, Mercereau-Puijalon O. Allelic diversity of the Plasmodium falciparum erythrocyte membrane protein 1 entails variant-specific red cell surface epitopes. PLoS One 2011; 6:e16544. [PMID: 21298021 PMCID: PMC3029348 DOI: 10.1371/journal.pone.0016544] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/21/2010] [Indexed: 01/11/2023] Open
Abstract
The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity.
Collapse
Affiliation(s)
- Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- CNRS URA 2581, Paris, France
| | - Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- CNRS URA 2581, Paris, France
| | - Alexandre Juillerat
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- CNRS URA 2185, Paris, France
| | - Cindy Vallieres
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- CNRS URA 2581, Paris, France
| | - Anita Lewit-Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- CNRS URA 2185, Paris, France
| | - Adama Tall
- Unité d'Epidémiologie des Maladies Infectieuses, Institut Pasteur, Dakar, Sénégal
| | - Laurence Baril
- Unité d'Epidémiologie des Maladies Infectieuses, Institut Pasteur, Dakar, Sénégal
| | - Graham A. Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- CNRS URA 2185, Paris, France
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- CNRS URA 2581, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Victor ME, Bengtsson A, Andersen G, Bengtsson D, Lusingu JP, Vestergaard LS, Arnot DE, Theander TG, Joergensen L, Jensen ATR. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes. Malar J 2010; 9:325. [PMID: 21078147 PMCID: PMC2994891 DOI: 10.1186/1475-2875-9-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. METHODS The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. RESULTS All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. CONCLUSIONS The baculovirus based insect cell system was distinctly superior to the E. coli expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.
Collapse
Affiliation(s)
- Michala E Victor
- Department of International Health, University of Copenhagen, Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vigan-Womas I, Lokossou A, Guillotte M, Juillerat A, Bentley G, Garcia A, Mercereau-Puijalon O, Migot-Nabias F. The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children. Malar J 2010; 9:267. [PMID: 20923548 PMCID: PMC2959068 DOI: 10.1186/1475-2875-9-267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/05/2010] [Indexed: 11/27/2022] Open
Abstract
Background The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic P. falciparum infection. Methods Serum was collected from Beninese children with severe malaria, uncomplicated malaria or P. falciparum asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α1, CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children. Results Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α1. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies. Conclusions Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.
Collapse
Affiliation(s)
- Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, F-75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children. Infect Immun 2010; 78:4653-9. [PMID: 20823214 DOI: 10.1128/iai.00593-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 different PfEMP1 variants, each PfEMP1 comprises several domains in its extracellular region, and the PfEMP1 repertoire in different parasites contains domain types that are serologically cross-reactive. In this longitudinal study, we followed 672 children living in an area of high malaria transmission during the first years of life and compared the acquisitions of antibodies to 32 Duffy-binding ligand-like (DBL) domains representing different types. For each child, we determined whether an antibody response to each domain was acquired before, after, or at the same time as responses to each of the other domains. We next used this information to calculate population-level odds ratios to measure the odds that antibodies to a given domain were acquired before antibodies to other domains. Odds ratios for 269 of the 496 possible domain combinations were statistically significant. Thus, the sequence in which individuals acquire antibodies to different PfEMP1 domains is ordered, and children in areas of endemicity first acquire antibodies to particular PfEMP1 domains encoded by the so-called group A and B/A var genes. The results imply that anti-PfEMP1 antibodies effectively structure PfEMP1 expression and play a major role in limiting parasite multiplication in the blood.
Collapse
|
13
|
Joergensen LM, Salanti A, Dobrilovic T, Barfod L, Hassenkam T, Theander TG, Hviid L, Arnot DE. The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs. Malar J 2010; 9:100. [PMID: 20403153 PMCID: PMC2868858 DOI: 10.1186/1475-2875-9-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target. Methods A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob. Results Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules. Conclusions High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.
Collapse
Affiliation(s)
- Lars M Joergensen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), CSS Øster Farimagsgade 5, Building 22 & 23, Postbox 2099, 1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cham GKK, Turner L, Lusingu J, Vestergaard L, Mmbando BP, Kurtis JD, Jensen ATR, Salanti A, Lavstsen T, Theander TG. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains. THE JOURNAL OF IMMUNOLOGY 2009; 183:3356-63. [PMID: 19675168 DOI: 10.4049/jimmunol.0901331] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains of different groupings in 1342 individuals living in five African villages characterized by markedly different malaria transmission. We show that children progressively acquire a broader repertoire of anti-PfEMP1 Abs, but that the rate of expansion is governed by transmission intensity. However, independently of transmission intensity, Abs are first acquired to particular Duffy binding ligand-like domains belonging to group A or B/A PfEMP1s. The results support the view that anti-PfEMP1 Ab responses effectively structure the expenditure of the repertoire of PfEMP1 maintained by the parasite. Parasites expressing certain group A and B/A PfEMP1s are responded to first by individuals with limited previous exposure, and the resulting Abs reduce the fitness and pathogenicity of these parasites during subsequent infections. This allows parasites expressing less pathogenic PFEMP1s to dominate during later infections. The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.
Collapse
Affiliation(s)
- Gerald K K Cham
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oleinikov AV, Amos E, Frye IT, Rossnagle E, Mutabingwa TK, Fried M, Duffy PE. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. PLoS Pathog 2009; 5:e1000386. [PMID: 19381252 PMCID: PMC2663049 DOI: 10.1371/journal.ppat.1000386] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/18/2009] [Indexed: 12/01/2022] Open
Abstract
Plasmodium falciparum–infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLβC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLβC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2βC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2βC2PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLβC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLβC2 domain. DBL2βC2PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2βC2PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses. Plasmodium falciparum exports the protein PfEMP1 to the surface of parasitized erythrocytes for roles in immunoevasion and adhesion. The size and structural complexity of this diverse protein family have limited earlier studies of PfEMP1 biology to low throughput and semi-quantitative approaches. We developed a high throughput quantitative assay of PfEMP1 adhesion and used it to analyze structural features of domains that bind the putative cerebral receptor ICAM1, as well as to survey the acquisition of functional antibodies in malaria-exposed children and adults. In studies of the PfEMP1 repertoire of clone 3D7 parasites, a single specific domain bound ICAM1 strongly. PfEMP1 domains that bind ICAM1 strongly have conserved features, including conserved amino acids within otherwise highly variant flexible loops of the protein. While neutralizing antibodies against the PfEMP1–ICAM1 interaction were uncommon in Tanzanian children, such antibodies were common in east African adults, possibly explaining why immune adults rarely carry ICAM1-binding parasites. This high throughput platform will significantly accelerate studies of PfEMP1 binding domains and the corresponding antibody responses involved in protective immunity.
Collapse
|
16
|
Recker M, Arinaminpathy N, Buckee CO. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity. Malar J 2008; 7:18. [PMID: 18215289 PMCID: PMC2265724 DOI: 10.1186/1475-2875-7-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/23/2008] [Indexed: 12/04/2022] Open
Abstract
Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1). It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.
Collapse
Affiliation(s)
- Mario Recker
- Department of Zoology, South Parks Road, OX1 3PS, Oxford, UK.
| | | | | |
Collapse
|