1
|
Prigent J, Jarossay A, Planchais C, Eden C, Dufloo J, Kök A, Lorin V, Vratskikh O, Couderc T, Bruel T, Schwartz O, Seaman MS, Ohlenschläger O, Dimitrov JD, Mouquet H. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Rep 2019; 23:2568-2581. [PMID: 29847789 PMCID: PMC5990490 DOI: 10.1016/j.celrep.2018.04.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition.
Collapse
Affiliation(s)
- Julie Prigent
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Annaëlle Jarossay
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Cyril Planchais
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Caroline Eden
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Oxana Vratskikh
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thérèse Couderc
- Biology of Infection Unit, INSERM U1117, Department of Cell Biology and Infection, Institut Pasteur, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | | | | | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France.
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
2
|
Poosarla VG, Li T, Goh BC, Schulten K, Wood TK, Maranas CD. Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol Bioeng 2017; 114:1331-1342. [PMID: 28059445 DOI: 10.1002/bit.26244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022]
Abstract
Antibody drugs play a critical role in infectious diseases, cancer, autoimmune diseases, and inflammation. However, experimental methods for the generation of therapeutic antibodies such as using immunized mice or directed evolution remain time consuming and cannot target a specific antigen epitope. Here, we describe the application of a computational framework called OptMAVEn combined with molecular dynamics to de novo design antibodies. Our reference system is antibody 2D10, a single-chain antibody (scFv) that recognizes the dodecapeptide DVFYPYPYASGS, a peptide mimic of mannose-containing carbohydrates. Five de novo designed scFvs sharing less than 75% sequence similarity to all existing natural antibody sequences were generated using OptMAVEn and their binding to the dodecapeptide was experimentally characterized by biolayer interferometry and isothermal titration calorimetry. Among them, three scFvs show binding affinity to the dodecapeptide at the nM level. Critically, these de novo designed scFvs exhibit considerably diverse modeled binding modes with the dodecapeptide. The results demonstrate the potential of OptMAVEn for the de novo design of thermally and conformationally stable antibodies with high binding affinity to antigens and encourage the targeting of other antigen targets in the future. Biotechnol. Bioeng. 2017;114: 1331-1342. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Venkata Giridhar Poosarla
- Department of Chemical Engineering, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Tong Li
- Department of Chemical Engineering, University Park, Pennsylvania, 16802
| | - Boon Chong Goh
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Thomas K Wood
- Department of Chemical Engineering, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Costas D Maranas
- Department of Chemical Engineering, University Park, Pennsylvania, 16802
| |
Collapse
|
3
|
Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis. Vaccine 2015; 33:5945-9. [PMID: 26187254 DOI: 10.1016/j.vaccine.2015.06.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/13/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics. One such metric, epitope fluctuation (and implied flexibility), is shown to be inversely correlated with immunogenicity for each of a broad spectrum of nonenveloped viruses. The molecular metrics and experimentally determined immunogenicities for these viruses are archived in the open-source vaccine computer-aided design database. Results indicate the promise of computer-aided vaccine design to bring greater efficiency to traditional lab-based vaccine discovery approaches.
Collapse
|
5
|
Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci 2012; 69:1435-45. [PMID: 22045557 PMCID: PMC11114792 DOI: 10.1007/s00018-011-0872-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/15/2023]
Abstract
B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.
Collapse
Affiliation(s)
- Hugo Mouquet
- Laboratory of Molecular Immunology, The Rockefeller University, New York City, NY 10021, USA.
| | | |
Collapse
|
7
|
Tapryal S, Krishnan L, Batra JK, Kaur KJ, Salunke DM. Cloning, expression and efficient refolding of carbohydrate-peptide mimicry recognizing single chain antibody 2D10. Protein Expr Purif 2010; 72:162-8. [PMID: 20363331 DOI: 10.1016/j.pep.2010.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
Abstract
Carbohydrate-peptide mimicry was found to be manifested through the cross-reactivity of an anti-mannopyranoside monoclonal antibody 2D10 (mAb-2D10) with YPY motif containing 12-mer peptide (DVFYPYPYASGS). Such multiple binding options for a monoclonal antibody could emanate from the possible flexibility of the antigen combining site. To address the molecular details of this phenomenon, single chain antibody (scFv) containing the antigen combining variable domain of mAb-2D10 was constructed. The present work describes the cloning, expression, purification and efficient refolding of scFv-2D10 and its His(6) tag fusion variants. The scFv expressed poorly in soluble/active form in the periplasmic compartment and concurrently exhibited higher tendency towards accumulation in inclusion bodies inside the Escherichia coli cytoplasm. The scFv was refolded from the inclusion bodies with approximately 68% yield using a previously described protocol which employed concomitant removal of the chaotropic and oxidizing reagents along with the additives. However, their differential removal, as described in the present report resulted in approximately 97% effective yield of the soluble scFv-2D10, an increase of 42%. The binding kinetics of the refolded scFv for both the mimicking ligands was examined using surface plasmon resonance experiments. The scFv-2D10 exhibited binding affinities similar to those reported for mAb-2D10 (IgG) showing that the modifications introduced in the refolding protocol have facilitated efficient preparation of active 2D10 scFv.
Collapse
Affiliation(s)
- Suman Tapryal
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
8
|
Brooks CL, Müller-Loennies S, Borisova SN, Brade L, Kosma P, Hirama T, Mackenzie CR, Brade H, Evans SV. Antibodies raised against chlamydial lipopolysaccharide antigens reveal convergence in germline gene usage and differential epitope recognition. Biochemistry 2010; 49:570-81. [PMID: 20000757 DOI: 10.1021/bi9011308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of antigen-binding fragments from two related monoclonal antibodies have been determined to high resolution in the presence of several carbohydrate antigens raised against chlamydial lipopolysaccharide. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes and how unrelated CDR H3 sequences can result in convergent binding of clinically relevant bacterial antigens.
Collapse
Affiliation(s)
- Cory L Brooks
- University of Victoria, Department of Biochemistry and Microbiology, PO Box 3055 STN CSC, Victoria, BC, Canada V8P 3P6
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Characterization of structurally defined epitopes recognized by monoclonal antibodies produced by chronic lymphocytic leukemia B cells. Blood 2009; 114:3615-24. [PMID: 19690339 DOI: 10.1182/blood-2009-01-197822] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite a wealth of information about the structure of surface membrane immunoglobulin (smIg) on chronic lymphocytic leukemia (CLL) cells, little is known about epitopes reacting with their binding sites. Probing phage-displayed peptide libraries, we identified and characterized mimetopes for Igs of 4 patients with IGHV mutated CLL (M-CLL) and 4 with IGHV unmutated CLL (U-CLL). Six of these mAbs were representatives of stereotyped B-cell receptors characteristic of CLL. We found that mimetic epitopes for U- and M-CLL Igs differed significantly. M-CLL-derived peptides exhibited better amino acid motifs, were more similar to each other, aligned more easily, and formed tighter clusters than U-CLL-derived peptides. Mono-, oligo-, and polyreactivity of peptides correlated with structural changes within antigen-binding sites of selecting M-CLL mAbs. Although M-CLL-isolated peptides and certain U-CLL mAbs bound more effectively to the selecting mAb, others were not as specific, reacting with M-CLL and U-CLL mAbs; these data suggest that in vivo structurally diverse epitopes could bind smIgs of distinct CLL clones, thereby altering survival and growth. Finally, an M-CLL-derived peptide inhibited, in a dose-dependent manner, binding of its homologous mAb to human B lymphocytes; therefore peptides that inhibit or alter the consequences of antigen-smIg interactions may represent therapeutic modalities in CLL.
Collapse
|
11
|
The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 2008; 29:91-7. [PMID: 18191616 DOI: 10.1016/j.it.2007.11.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 11/22/2022]
Abstract
A central dogma in immunology is that antibody specificity is solely the result of variable (V)-region interactions with an antigen. However, this view is not tenable in light of numerous reports that constant heavy (C(H)) domains can affect binding affinity and specificity and V-region structure. Kinetic and thermodynamic proof for the occurrence of this phenomenon is now available. C(H)-region effects on affinity and specificity suggest new mechanisms for generating antibody diversity and polyreactivity (multispecificity) that impact current views on idiotype regulation, autoimmunity, and B cell selection and change our understanding of vaccine responses.
Collapse
|