1
|
Kielbassa K, Van der Weele L, Voskuyl AE, de Vries N, Eldering E, Kuijpers TW. Differential expression pattern of Bcl-2 family members in B and T cells in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2023; 25:225. [PMID: 37993903 PMCID: PMC10664305 DOI: 10.1186/s13075-023-03203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression level of anti-apoptotic Bcl-2 family proteins in B and T cells in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in relation to disease activity and the effect of various Bcl-2 family inhibitors (BH3 mimetics) as potential treatment. METHODS We included 14 SLE patients, 12 RA patients, and 13 healthy controls to study anti-apoptotic Bcl-2, Bcl-XL, and Mcl-1 expression and cell survival in different B and T cell subsets using stimulation assays and intracellular flow cytometry. Effect of various BH3 mimetics was assessed by cell viability analyses. RESULTS In SLE, significant differences in Bcl-2 family members were confined to the B cell compartment with decreased induction of Bcl-XL (p ≤ 0.05) and Mcl-1 (p ≤ 0.001) upon CpG stimulation. In RA, we did not observe any differences in expression levels of Bcl-2 family proteins. Expression patterns did not correlate with disease activity apart from decreased induction of Mcl-1 in B cells in active SLE. After in vitro stimulation with CpG, plasmablasts were more viable after treatment with three different BH3 mimetics compared to naïve or memory B cells in control and patient cells. After activation, Mcl-1 inhibition was most effective in reducing plasmablast and T cell viability, however, less in patients than controls. CONCLUSION Our study provides evidence for the increased differential expression pattern of Bcl-2 family members in B and T cell subsets of patients with SLE compared to controls. Tested BH3 mimetics showed higher efficacy in controls compared to both autoimmune diseases, though nonsignificant due to low patient numbers.
Collapse
Affiliation(s)
- K Kielbassa
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - L Van der Weele
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - A E Voskuyl
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - N de Vries
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - T W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Niu X, Yang Y, Yu J, Song H, Yu J, Huang Q, Liu Y, Zhang D, Han T, Li W. Panlongqi tablet suppresses adjuvant-induced rheumatoid arthritis by inhibiting the inflammatory reponse in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116250. [PMID: 36791928 DOI: 10.1016/j.jep.2023.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panlongqi Tablet is prepared with the ancestral secret recipe provided by Mr. Wang Jiacheng, a famous specialist in orthopedics and traumatology of China. The efficacy and safety of PLQT have been supported by years of clinical practice in the treatment of joint-related conditions. Has remarkable effect for treating rheumatoid arthritis (RA) clinically. However, its mechanism is not entirely clear. AIM OF THE STUDY We aim to evaluate the anti-inflammatory activity of PLQT and explore its mechanism in adjuvant-induced arthritis (AA) mice and LPS-induced Human fibroblast-like synovial (HFLS) cells. MATERIALS AND METHODS To this end, we analyzed the active ingredients in PLQT by HPLC-MS/MS. Furthermore, the anti-RA effect of PLQT was studied through proliferation, apoptosis, foot swelling, cytokine levels, immune organ index, histopathology and related signal pathways in LPS-induced HFLS cells and AA-treated mice. RESULTS HPLC-MS/MS results showed that PLQT contained a variety of active compounds, such as epicatechin, imperatorin, hydroxysafflor yellow A and so on. PLQT significantly inhibited the abnormal proliferation of HFLS cells induced by LPS, promoted cell apoptosis. In AA-treated mice, PLQT alleviated RA symptoms by alleviating paw swelling, synovial hyperplasia, pannus formation, inflammatory cell infiltration, and inhibiting abnormal immune responses. The results showed that PLQT significantly decreased the expression of inflammatory mediators (IL-1β, IL-6, IL-17) in vivo and in vitro, which may be related to the regulation of PI3K/Akt, MAPK and JAK/STAT signaling pathways. CONCLUSION Based on serum pharmacology and in vivo pharmacology studies, PLQT may regulate RA symptoms by regulating inflammatory and immune response-related pathways, which is an effective method for the treatment of RA.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
3
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
4
|
The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nat Rev Rheumatol 2017; 12:543-58. [PMID: 27549026 DOI: 10.1038/nrrheum.2016.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.
Collapse
|
5
|
Lawlor KE, van Nieuwenhuijze A, Parker KL, Drake SF, Campbell IK, Smith SD, Vince JE, Strasser A, Wicks IP. Bcl-2 overexpression ameliorates immune complex-mediated arthritis by altering FcγRIIb expression and monocyte homeostasis. J Leukoc Biol 2013; 93:585-97. [PMID: 23341540 DOI: 10.1189/jlb.0412190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RA is a chronic autoimmune disease characterized by accumulation of inflammatory cells within synovial joints. RA is associated with a failure of apoptosis of infiltrating leukocytes, thought to be a result of overexpression of prosurvival Bcl-2 proteins. Overexpression of Bcl-2 in hematopoietic cells can result in spontaneous autoimmunity. We therefore hypothesized that increased Bcl-2 in the hematopoietic compartment would reduce apoptosis and thereby, exacerbate inflammatory arthritis. Paradoxically, we found that overexpression of Bcl-2 in mice (vav-bcl-2) markedly reduced pathology in antibody-dependent models of RA (CIA and K/BxN serum transfer arthritis). No such protection was observed in a model of CD4(+) T cell-dependent, B cell-independent arthritis (mBSA/IL-1-induced arthritis). In CIA, vav-bcl-2 Tg mice had lower antibody production to CII, which might explain reduced disease. However, Bcl-2 overexpression also reduced passive K/BxN serum transfer arthritis. Overexpression of Bcl-2 caused a monocytosis, with preferential expansion of Ly6C(lo) monocytes and increased expression of the inhibitory receptor for IgG, FcγRIIb, on leukocytes. Skewing of the myeloid cell population, increases in FcγRIIb, and reduced arthritis were independent of the hypergammaglobulinemia found in vav-bcl-2 Tg mice. These data reveal selective effects of the Bcl-2-regulated apoptotic pathway on monocyte differentiation and the expression of FcRs critical for regulation of antibody/immune complex-mediated disease.
Collapse
Affiliation(s)
- Kate E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lawlor KE, Smith SD, van Nieuwenhuijze A, Huang DCS, Wicks IP. Evaluation of the Bcl-2 family antagonist ABT-737 in collagen-induced arthritis. J Leukoc Biol 2011; 90:819-29. [PMID: 21719460 DOI: 10.1189/jlb.0311174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic manipulation of cellular apoptosis holds great promise for malignant and potentially nonmalignant diseases. A relative resistance to apoptosis in RA synovium is associated with increased expression of prosurvival Bcl-2 family members. In this study, we demonstrate that treatment of DBA/1 mice, prior to the onset of CIA with ABT-737, a BH3 mimetic targeting Bcl-2, Bcl-w, and Bcl-x(L), ameliorated disease development. In contrast, treatment of mice with ABT-737 in established CIA did not alter the course of disease. ABT-737 induced lymphopenia, however pathogenic lymphoid populations in CIA mice were less affected, as shown by relatively normal T and B cell responses to CII. Naïve lymphocytes were highly sensitive to apoptosis after culture with ABT-737, but synovial macrophages and neutrophils were not. Mcl-1 was detected in synovial monocyte/macrophages and neutrophils and strikingly, its expression, rather than Bcl-2 and Bcl-x(L), increased in the affected paws and lymphoid organs of mice with CIA. These observations implicate Mcl-1, which is not targeted by ABT-737, in the survival of inflammatory cells in established CIA and suggest that antagonism of Mcl-1 may be more effective in diseases such as RA.
Collapse
Affiliation(s)
- Kate E Lawlor
- Reid Rheumatology Laboratory, Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
7
|
Trypanosoma cruzi antigen immunization induces a higher B cell survival in BALB/c mice, a susceptible strain, compared to C57BL/6 B lymphocytes, a resistant strain to cardiac autoimmunity. Med Microbiol Immunol 2011; 200:209-18. [DOI: 10.1007/s00430-011-0192-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Indexed: 12/25/2022]
|
8
|
Phillips DC, Dias HKI, Kitas GD, Griffiths HR. Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention. Antioxid Redox Signal 2010; 12:743-85. [PMID: 19686039 DOI: 10.1089/ars.2009.2607] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.
Collapse
Affiliation(s)
- Darren C Phillips
- Life and Health Sciences, Aston University, Birmingham B4 7ET, West Midlands, United Kingdom
| | | | | | | |
Collapse
|
9
|
Chen L, Guo L, Tian J, He H, Marinova E, Zhang P, Zheng B, Han S. Overexpression of CXC chemokine ligand 14 exacerbates collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2010; 184:4455-9. [PMID: 20212097 DOI: 10.4049/jimmunol.0900525] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCL14 is a relatively new chemokine with unidentified receptor and undefined function. Recently, we found that CXCL14 is upregulated in arthritic joints in a mouse model of autoimmune arthritis, collagen-induced arthritis. To examine the role of CXCL14 in the development and pathogenesis of autoimmune arthritis, we have generated transgenic (Tg) mice that overexpress CXCL14 under control of phosphoglycerate kinase promoter. The results showed that CXCL14-Tg mice developed more severe arthritis compared with wild-type controls. The draining lymph nodes of CXCL14-Tg mice were significantly enlarged and contained an increased number of activated T cells, particularly the CD44(+)CD62L(low) effector memory cells. In addition, T cells from CXCL14-Tg mice exhibited an enhanced proliferative response against collagen II and produced higher levels of IFN-gamma but not IL-4 or IL-17. CXCL14-Tg mice also had elevated levels of IgG2a autoantibodies. These findings indicated that CXCL14 plays an important role in the autoimmune arthritis, which may have an implication in understanding the pathogenic mechanisms of rheumatoid arthritis in humans and, ultimately, therapeutic interference.
Collapse
Affiliation(s)
- Limo Chen
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bcl-xL is required for the development of functional regulatory CD4 cells in lupus-afflicted mice following treatment with a tolerogenic peptide. J Autoimmun 2010; 34:87-95. [DOI: 10.1016/j.jaut.2009.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 02/01/2023]
|
11
|
Salgado-Bustamante M, Ortiz-Pérez MD, Calderón-Aranda E, Estrada-Capetillo L, Niño-Moreno P, González-Amaro R, Portales-Pérez D. Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:760-7. [PMID: 19962721 DOI: 10.1016/j.scitotenv.2009.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 10/28/2009] [Accepted: 11/09/2009] [Indexed: 04/14/2023]
Abstract
We have assessed whether the combined exposure to arsenic (As) and fluoride (F) exerts a different effect than the exposure to As alone on the pattern of expression of apoptosis and inflammatory genes by immune cells. RNA was extracted from peripheral blood mononuclear cells from twenty individuals exposed or not to As or F or both. Then, cDNA was isolated, and the expression of 180 genes related to apoptosis and inflammation was tested by a cDNA array test. We found significant differences in the expression of 9 apoptosis and 15 inflammation genes in the three exposed groups compared to non-exposed individuals. In addition, subjects exposed to As or F or both showed different patterns of expression of at least 19 genes. Our data indicate that the combined exposure to As and F has a different effect on gene expression than the exposure to As or F alone.
Collapse
|
12
|
Li R, Li X, Li Z. Altered collagen II 263-272 peptide immunization induces inhibition of collagen-induced arthritis through a shift toward Th2-type response. ACTA ACUST UNITED AC 2009; 73:341-7. [DOI: 10.1111/j.1399-0039.2009.01223.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 2009; 284:9176-83. [PMID: 19179333 DOI: 10.1074/jbc.m808656200] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
4-Hydroxynonenal (HNE) is a pro-apoptotic electrophile generated during the spontaneous decomposition of oxidized lipids. We have previously shown that HNE activates the transcription factor, heat shock factor 1 (HSF1), and promotes cytoprotective heat shock gene expression and that silencing HSF1 sensitizes the colon cancer cell line RKO to HNE-induced apoptosis. Here we report a reduction in the anti-apoptotic proteins Bcl-X(L), Mcl-1, and Bcl-2 in HSF1-silenced RKO cells, and we examine the underlying mechanism. To investigate the regulation of the Bcl-2 family by HSF1, microarray analysis of gene expression was performed. We observed that the Hsp70 co-chaperone, BAG3 (Bcl-2-associated athanogene domain 3), is strongly induced by HNE in control but not in HSF1-silenced colon cancer cells. Silencing BAG3 expression with small interfering RNA caused a dramatic reduction in Bcl-X(L), Mcl-1, and Bcl-2 protein levels in colon cancer cells and increased apoptosis, similar to the effect of silencing HSF1. Also, immunoprecipitation experiments indicate specific interactions between BAG3, Hsp70, and the Bcl-2 family member, Bcl-X(L). Overall, our data reveal that BAG3 is HSF1-inducible and has a unique role facilitating cancer cell survival during pro-apoptotic stress by stabilizing the level of Bcl-2 family proteins.
Collapse
Affiliation(s)
- Aaron T Jacobs
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|