1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Tsai WT, Cheng A, Chuang YC, Ho CM, Wu YM, Ho MC, Sun HY, Hu RH, Chen YC. Cryptococcosis in wait-listed liver transplant candidates: Prevalence, manifestations, and risk factors. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:103-111. [PMID: 39277518 DOI: 10.1016/j.jmii.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Liver cirrhosis compromises immunity against cryptococcosis, and liver transplant recipients tend to develop the disease earlier after transplantation, possibly due to unrecognized pretransplant infection. We assessed the prevalence and characteristics of cryptococcosis among liver transplant candidates and whether pre-transplant cryptococcal antigen (CrAg) can detect the disease before transplantation. METHODS We retrospectively included liver transplant candidates in a tertiary hospital during 2017-2022. Serum CrAg and pulmonary computed tomography were incorporated in routine transplant evaluation. Other investigations were done if indicated. Cryptococcosis was diagnosed by positive culture or CrAg. Risk factors for cryptococcosis were also assessed. RESULTS Of the 377 candidates with a median MELD-Na score of 18, 84.4% had hepatitis B virus (HBV) infection. Cryptococcosis was diagnosed in 10 (2.6%) candidates, by CrAg in 6, culture in 2, or both in 2. Only 3 had fever, and 3 were asymptomatic; 7 had pulmonary cryptococcosis. Of the 10 candidates with cryptococcosis, one underwent transplantation after 143-day antifungals. Of the 87 candidates undergoing liver transplantation, one (1.2%) recipient developed cryptococcosis 14 days post-transplant with negative CrAg three weeks before transplantation. HBsAg-positive chronic HBV infection with HBV DNA loads <2000 IU/mL was significantly associated with cryptococcosis (odds ratio 4.4, 95% confidence interval 1.2-16.5, p = 0.03) after the adjustment of MELD-Na score. CONCLUSIONS The prevalence of cryptococcosis was 2.6% among our liver transplant candidates and CrAg detected 80% of the cases. Disease presentation was mild and pulmonary disease predominated. HBsAg-positive chronic HBV infection with HBV DNA loads <2000 IU/mL was significantly associated with cryptococcosis.
Collapse
Affiliation(s)
- Wan-Ting Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan; Department of Internal Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, 103212, Taiwan
| | - Aristine Cheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan.
| | - Ray-Hung Hu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| |
Collapse
|
3
|
Goughenour KD, Nair AS, Xu J, Olszewski MA, Wozniak KL. Dendritic Cells: Multifunctional Roles in Host Defenses to Cryptococcus Infections. J Fungi (Basel) 2023; 9:1050. [PMID: 37998856 PMCID: PMC10672120 DOI: 10.3390/jof9111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are an increasingly growing public health concern, and Cryptococcus is one of the most problematic fungal organisms causing substantial mortality and morbidity worldwide. Clinically, this high incidence of cryptococcosis is most commonly seen in immunocompromised patients, especially those who lack an adaptive T cell response, such as HIV/AIDS patients. However, patients with other underlying immunodeficiencies are also at an increased risk for cryptococcosis. The adaptive immune response, in particular the Th1/Th17 T-cell-mediated responses, to pulmonary Cryptococcus infections are required for host protection. Dendritic cells (DCs), encompassing multiple subsets identified to date, are recognized as the major professional antigen-presenting cell (APC) subset essential for the initiation and execution of T-cell immunity. Apart from their prominent role in orchestration of the adaptive arm of the immune defenses, DCs are fully armed cells from the innate immune system capable of the recognition, uptake, and killing of the fungal cells. Thus, DCs serve as a critical point for the endpoint outcomes of either fungal control or unrestrained fungal infection. Multiple studies have shown that DCs are required for anti-cryptococcal defense in the lungs. In addition, the role of DCs in Cryptococcus gattii infections is just starting to be elucidated. C. gattii has recently risen to prominence with multiple outbreaks in the US and Canada, demonstrating increased virulence in non-immunocompromised individuals. C. gattii infection fails to generate an inflammatory immune response or a protective Th1/Th17 T cell response, at least in part, through a lack of proper DC function. Here we summarize the multiple roles of DCs, including subsets of DCs in both mouse and human models, the roles of DCs during cryptococcal infection, and mechanisms by cryptococcal cells to attempt to undermine these host defenses.
Collapse
Affiliation(s)
- Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Onyishi CU, Desanti GE, Wilkinson AL, Lara-Reyna S, Frickel EM, Fejer G, Christophe OD, Bryant CE, Mukhopadhyay S, Gordon S, May RC. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat Commun 2023; 14:4895. [PMID: 37580395 PMCID: PMC10425417 DOI: 10.1038/s41467-023-40635-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Guillaume E Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Alex L Wilkinson
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase inflammation thrombose HITH U1176, 94276, Le Kremlin-Bicêtre, France
| | - Clare E Bryant
- University of Cambridge, Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
5
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
6
|
Pacifici N, Cruz-Acuña M, Diener A, Tu A, Senthil N, Han H, Lewis JS. Vomocytosis of Cryptococcus neoformans cells from murine, bone marrow-derived dendritic cells. PLoS One 2023; 18:e0280692. [PMID: 36928392 PMCID: PMC10019626 DOI: 10.1371/journal.pone.0280692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 03/18/2023] Open
Abstract
Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Melissa Cruz-Acuña
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Agustina Diener
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Allen Tu
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Neeraj Senthil
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Hyunsoo Han
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fehri E, Ennaifer E, Bel Haj Rhouma R, Ardhaoui M, Boubaker S. TLR9 and Glioma: Friends or Foes? Cells 2022; 12:cells12010152. [PMID: 36611945 PMCID: PMC9818384 DOI: 10.3390/cells12010152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is an intracellular innate immunity receptor that plays a vital role in chronic inflammation and in recognizing pathogenic and self-DNA in immune complexes. This activation of intracellular signaling leads to the transcription of either immune-related or malignancy genes through specific transcription factors. Thus, it has been hypothesized that TLR9 may cause glioma. This article reviews the roles of TLR9 in the pathogenesis of glioma and its related signaling molecules in either defending or promoting glioma. TLR9 mediates the invasion-induced hypoxia of brain cancer cells by the activation of matrix metalloproteinases (2, 9, and 13) in brain tissues. In contrast, the combination of the TLR9 agonist CpG ODN to radiotherapy boosts the role of T cells in antitumor effects. The TLR9 agonist CpG ODN 107 also enhances the radiosensitivity of human glioma U87 cells by blocking tumor angiogenesis. CpG enhances apoptosis in vitro and in vivo. Furthermore, it can enhance the antigen-presenting capacity of microglia, switch immune response toward CD8 T cells, and reduce the number of CD4CD25 Treg cells. CpG ODN shows promise as a potent immunotherapeutic drug against cancer, but specific cautions should be taken when activating TLR9, especially in the case of glioblastoma.
Collapse
Affiliation(s)
- Emna Fehri
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Correspondence:
| | - Emna Ennaifer
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Rahima Bel Haj Rhouma
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Monia Ardhaoui
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Samir Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
8
|
Sabatini A, Guerrera G, Corsetti M, Ruocco G, De Bardi M, Renzi S, Cavalieri D, Battistini L, Angelini DF, Volpe E. Human Conventional and Plasmacytoid Dendritic Cells Differ in Their Ability to Respond to Saccharomyces cerevisiae. Front Immunol 2022; 13:850404. [PMID: 35634316 PMCID: PMC9131191 DOI: 10.3389/fimmu.2022.850404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Saccharomyces cerevisiae is a commensal yeast colonizer of mucosal surfaces and an emerging opportunistic pathogen in the mucosa and bloodstream. The role of S. cerevisiae has been largely characterized in peripheral blood mononuclear cells and monocyte-derived dendritic cells, where yeast cells induce the production of inflammatory cytokines through the interaction with mannose receptors, chitin receptors, DC SIGN, and dectin1. However, the response of blood-circulating dendritic cells (DCs) to S. cerevisiae has never been investigated. Among blood DCs, conventional DCs (cDCs) are producers of inflammatory cytokines, while plasmacytoid DCs (pDCs) are a specialized population producing a large amount of interferon (IFN)-α, which is involved in the antiviral immune response. Here we report that both human DC subsets are able to sense S. cerevisiae. In particular, cDCs produce interleukin (IL)-6, express activation markers, and promotes T helper 17 cell polarization in response to yeasts, behaving similarly to monocyte-derived DCs as previously described. Interestingly, pDCs, not cDCs, sense fungal nucleic acids, leading to the generation of P1-pDCs (PD-L1+CD80–), a pDC subset characterized by the production of IFN-α and the induction of a Th profile producing IL-10. These results highlight a novel role of pDCs in response to S. cerevisiae that could be important for the regulation of the host microbiota–immune system balance and of anti-fungal immune response.
Collapse
Affiliation(s)
- Andrea Sabatini
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Marta Corsetti
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Gabriella Ruocco
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Daniela Francesca Angelini
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
10
|
Berguson HP, Caulfield LW, Price MS. Influence of Pathogen Carbon Metabolism on Interactions With Host Immunity. Front Cell Infect Microbiol 2022; 12:861405. [PMID: 35372116 PMCID: PMC8968422 DOI: 10.3389/fcimb.2022.861405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous opportunistic fungal pathogen typically causing disease in immunocompromised individuals and is globally responsible for about 15% of AIDS-related deaths annually. C. neoformans first causes pulmonary infection in the host and then disseminates to the brain, causing meningoencephalitis. The yeast must obtain and metabolize carbon within the host in order to survive in the central nervous system and cause disease. Communication between pathogen and host involves recognition of multiple carbon-containing compounds on the yeast surface: polysaccharide capsule, fungal cell wall, and glycosylated proteins comprising the major immune modulators. The structure and function of polysaccharide capsule has been studied for the past 70 years, emphasizing its role in virulence. While protected by the capsule, fungal cell wall has likewise been a focus of study for several decades for its role in cell integrity and host recognition. Associated with both of these major structures are glycosylated proteins, which exhibit known immunomodulatory effects. While many studies have investigated the role of carbon metabolism on virulence and survival within the host, the precise mechanism(s) affecting host-pathogen communication remain ill-defined. This review summarizes the current knowledge on mutants in carbon metabolism and their effect on the host immune response that leads to changes in pathogen recognition and virulence. Understanding these critical interactions will provide fresh perspectives on potential treatments and the natural history of cryptococcal disease.
Collapse
Affiliation(s)
- Hannah P. Berguson
- Department of Anatomical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Lauren W. Caulfield
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Michael S. Price
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Michael S. Price,
| |
Collapse
|
11
|
Dangarembizi R. Reimagining the future of African brain health: Perspectives for basic research on the pathogenesis of cryptococcal meningitis. Brain Behav Immun Health 2021; 18:100388. [PMID: 34825235 PMCID: PMC8605210 DOI: 10.1016/j.bbih.2021.100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptococcal meningitis is a fatal opportunistic infection of the brain and a leading cause of neurological damage and death in immunocompromised individuals. This neglected fungal disease of the brain is a huge burden on the health systems of developing countries, especially in Sub-Saharan Africa, where up to 25% of people living with HIV/AIDS succumb to it. Cryptococcal fungal cells have a predilection for the brain and they are capable of traversing the blood brain barrier and invade the brain where they cause infection, inflammation and a disruption of normal brain function. A robust host neuroimmune response is critical for pathogen clearance and survival, and a good understanding of the mechanisms underlying its development in the host is critical for the development of effective treatments. However, past basic research studies have been focussed on the characteristics of the fungus and its effect on the peripheral immune system; with little attention paid to how it interacts with brain immune cells. This mini review briefly discusses the paucity of basic research data on the neuroimmune response to cryptococcal infection, raises pertinent questions on how the brain cells respond to the fungal infection, and thereafter discusses models, techniques and advanced technologies that could be useful for carrying out high-throughput research on the pathogenesis of cryptococcal meningitis.
Collapse
Affiliation(s)
- R Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Wei W, Ning C, Huang J, Wang G, Lai J, Han J, He J, Zhang H, Liang B, Liao Y, Le T, Luo Q, Li Z, Jiang J, Ye L, Liang H. Talaromyces marneffei promotes M2-like polarization of human macrophages by downregulating SOCS3 expression and activating the TLR9 pathway. Virulence 2021; 12:1997-2012. [PMID: 34339354 PMCID: PMC8331029 DOI: 10.1080/21505594.2021.1958470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Little is known about how Talaromyces marneffei, a thermally dimorphic fungus that causes substantial morbidity and mortality in Southeast Asia, evades the human immune system. Polarization of macrophages into fungal-inhibiting M1-like and fungal-promoting M2-like types has been shown to play an important role in the innate immune response against fungal pathogens. This mechanism has not been defined for T. marneffei. Here, we demonstrated that T. marneffei promotes its survival in human macrophages by inducing them toward M2-like polarization. Our investigations of the mechanism revealed that T. marneffei infection led to SOCS3 protein degradation by inducing tyrosine phosphorylation, thereby relieving the inhibitory effect of SOCS3 on p-STAT6, a key factor for M2-like polarization. Our SOCS3-overexpression experiments showed that SOCS3 is a positive regulator of M1-like polarization and plays an important role in limiting M2-like polarization. Furthermore, we found that inhibition of the TLR9 pathway partially blocked T. marneffei-induced M2-like polarization and significantly enhanced the killing activity of macrophages against T. marneffei. Collectively, these results reveal a novel mechanism by which T. marneffei evades the immune response of human macrophages.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyan Liao
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Thuy Le
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina, USA
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Li
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Onyishi CU, May RC. Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology 2021; 165:143-157. [PMID: 34716931 PMCID: PMC9426616 DOI: 10.1111/imm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose‐binding lectin, Dectin‐2, Toll‐like receptors and macrophage colony‐stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV‐positive and HIV‐negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Role of Dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect Immun 2021; 89:e0033021. [PMID: 34251289 DOI: 10.1128/iai.00330-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2KO) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.
Collapse
|
15
|
da Silva-Junior EB, Firmino-Cruz L, Guimarães-de-Oliveira JC, De-Medeiros JVR, de Oliveira Nascimento D, Freire-de-Lima M, de Brito-Gitirana L, Morrot A, Previato JO, Mendonça-Previato L, Decote-Ricardo D, de Matos Guedes HL, Freire-de-Lima CG. The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Sci Rep 2021; 11:1407. [PMID: 33446850 PMCID: PMC7809259 DOI: 10.1038/s41598-021-80959-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 9 (TLR9) is crucial to the host immune response against fungi, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, but its importance in Cryptococcus gattii infection is unknown. Our study aimed to understand the role of TLR9 during the course of experimental C. gattii infection in vivo, considering that the cryptococcal DNA interaction with the receptor could contribute to host immunity even in an extremely susceptible model. We inoculated C57BL/6 (WT) and TLR9 knock-out (TLR9−/−) mice intratracheally with 104C. gattii yeast cells. TLR9−/− mice had a higher mortality rate compared to WT mice and more yeast cells that had abnormal size, known as titan cells, in the lungs. TLR9−/− mice also had a greater number of CFUs in the spleen and brain than WT mice, in addition to having lower levels of IFN-γ and IL-17 in the lung. With these markers of aggressive cryptococcosis, we can state that TLR9−/− mice are more susceptible to C. gattii, probably due to a mechanism associated with the decrease of a Th1 and Th17-type immune response that promotes the formation of titan cells in the lungs. Therefore, our results indicate the participation of TLR9 in murine resistance to C. gattii infection.
Collapse
Affiliation(s)
- Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil
| | | | - Juliana Valente Rodrigues De-Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil
| | | | - Matheus Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23890-000, Brazil.
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil. .,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21045-900, Brazil.
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-900, Brazil.
| |
Collapse
|
16
|
García-Carnero LC, Martínez-Álvarez JA, Salazar-García LM, Lozoya-Pérez NE, González-Hernández SE, Tamez-Castrellón AK. Recognition of Fungal Components by the Host Immune System. Curr Protein Pept Sci 2021; 21:245-264. [PMID: 31889486 DOI: 10.2174/1389203721666191231105546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A Martínez-Álvarez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Luis M Salazar-García
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Alma K Tamez-Castrellón
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Jannuzzi GP, de Almeida JRF, Paulo LNM, de Almeida SR, Ferreira KS. Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Front Cell Infect Microbiol 2020; 10:591970. [PMID: 33194839 PMCID: PMC7606298 DOI: 10.3389/fcimb.2020.591970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022] Open
Abstract
The immune response against fungal infections is complex and exhibits several factors involving innate elements that participate in the interaction with the fungus. The innate immune system developed pattern recognition receptors that recognize different pathogen-associated molecular patterns present both on the surface of the fungi cell wall and on their genetic material. These receptors have the function of activating the innate immune response and regulating a subsequent adaptive immune response. Among pattern recognition receptors, the family of Toll-like receptors and C-type lectin receptors are the best described and characterized, they act directly in the recognition of pathogen-associated molecular patterns expressed on the wall of the fungus and consequently in directing the immune response. In recent years, the role of intracellular pattern recognition receptors (TLR3, TLR7, TLR8, and TLR9) has become increasingly important in the pathophysiology of some mycoses, as paracoccidioidomycosis, cryptococcosis, aspergillosis, and candidiasis. The recognition of nucleic acids performed by these receptors can be essential for the control of some fungal infections, as they can be harmful to others. Therefore, this review focuses on highlighting the role played by intracellular pattern recognition receptors both in controlling the infection and in the host's susceptibility against the main fungi of medical relevance.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | | | - Larissa Neves Monteiro Paulo
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Departamento de Ciências Biológicas do Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
18
|
Limited Role of Mincle in the Host Defense against Infection with Cryptococcus deneoformans. Infect Immun 2020; 88:IAI.00400-20. [PMID: 32868343 DOI: 10.1128/iai.00400-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.
Collapse
|
19
|
Dobashi-Okuyama K, Kawakami K, Miyasaka T, Sato K, Ishii K, Kawakami K, Masuda C, Suzuki S, Kasamatsu J, Yamamoto H, Tanno D, Kanno E, Tanno H, Kawano T, Takayanagi M, Takahashi T, Ohno I. Novel Toll-Like Receptor 9 Agonist Derived from Cryptococcus neoformans Attenuates Allergic Inflammation Leading to Asthma Onset in Mice. Int Arch Allergy Immunol 2020; 181:651-664. [PMID: 32585675 DOI: 10.1159/000508535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The enhanced type 2 helper (Th2) immune response is responsible for the pathogenesis of allergic asthma. To suppress the enhanced Th2 immune response, activation of the Th1 immune response has been an alternative strategy for anti-asthma therapy. In this context, effective Th1-inducing adjuvants that inhibit the development of allergic asthma but do not flare the side effects of the primary agent are required in clinical treatment and preventive medicine. OBJECTIVE In this study, we aimed to determine the regulation of the Th2 type immune response in asthma by a novel immunostimulatory oligodeoxynucleotide (ODN) derived from Cryptococcus neoformans, termed ODN112, which contains a cytosine-guanine (CG) sequence but not canonical CpG motifs. METHODS Using an ovalbumin-induced asthma mouse model, we assessed the effect of ODN112 on prototypical asthma-related features in the lung and on the Th1/Th2 profile in the lymph nodes and lung of mice treated with ODN112 during sensitization. RESULTS AND CONCLUSION ODN112 treatment attenuated asthma features in mice. In the bronchial lymph nodes of the lungs and in the spleen, ODN112 increased interferon-γ production and attenuated Th2 recall responses. In dendritic cells (DCs) after allergen sensitization, ODN112 enhanced cluster of differentiation (CD) 40 and CD80 expression but did not alter CD86 expression. Interleukin-12p40 production from DCs was also increased in a Th2-polarizing condition. Our results suggest that ODN112 is a potential Th1-inducing adjuvant during Th2 cell differentiation in the sensitization phase.
Collapse
Affiliation(s)
- Kaori Dobashi-Okuyama
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan,
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chiaki Masuda
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Syugo Suzuki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
20
|
Sato K, Yamamoto H, Nomura T, Kasamatsu J, Miyasaka T, Tanno D, Matsumoto I, Kagesawa T, Miyahara A, Zong T, Oniyama A, Kawamura K, Yokoyama R, Kitai Y, Ishizuka S, Kanno E, Tanno H, Suda H, Morita M, Yamamoto M, Iwakura Y, Ishii K, Kawakami K. Production of IL-17A at Innate Immune Phase Leads to Decreased Th1 Immune Response and Attenuated Host Defense against Infection with Cryptococcus deneoformans. THE JOURNAL OF IMMUNOLOGY 2020; 205:686-698. [PMID: 32561568 DOI: 10.4049/jimmunol.1901238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rβ2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan;
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomomitsu Miyasaka
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-0905, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shigenari Ishizuka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromi Suda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Yoichiro Iwakura
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
21
|
NLRP3 Inflammasome and Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4063562. [PMID: 32148650 PMCID: PMC7049400 DOI: 10.1155/2020/4063562] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.
Collapse
|
22
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
23
|
Tanno D, Yokoyama R, Kawamura K, Kitai Y, Yuan X, Ishii K, De Jesus M, Yamamoto H, Sato K, Miyasaka T, Shimura H, Shibata N, Adachi Y, Ohno N, Yamasaki S, Kawakami K. Dectin-2-mediated signaling triggered by the cell wall polysaccharides of Cryptococcus neoformans. Microbiol Immunol 2019; 63:500-512. [PMID: 31544981 DOI: 10.1111/1348-0421.12746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin-2 recognizes high-mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin-2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin-2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin-2-mediated activation of immune cells. In a NFAT-GFP reporter assay of the reported cells expressing Dectin-2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin-2-mediated signaling. This activity was detected in the supernatant of β-glucanase-treated Cap67 and more strongly in the semi-purified polysaccharides of this supernatant using ConA-affinity chromatography (ConA-bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA-bound fraction of the β-glucanase-treated Cap67 supernatant was bound to Dectin-2-Fc fusion protein in a dose-dependent manner and strongly induced the production of interleukin-12p40 and tumour necrosis factor-α by dendritic cells; this was abrogated under the Dectin-2-deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin-2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.
Collapse
Affiliation(s)
- Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Respiratory Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Shimura
- Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Jiang YK, Wu JQ, Zhao HZ, Wang X, Wang RY, Zhou LH, Yip CW, Huang LP, Cheng JH, Chen YH, Li H, Zhu LP, Weng XH. Genetic influence of Toll-like receptors on non-HIV cryptococcal meningitis: An observational cohort study. EBioMedicine 2018; 37:401-409. [PMID: 30366814 PMCID: PMC6284510 DOI: 10.1016/j.ebiom.2018.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022] Open
Abstract
Background Cryptococcal meningitis (CM) is a significant source of mortality, the pathogenesis of which has not been fully understood, especially in non-HIV infected populations. We aimed to explore the potential genetic influence of Toll-like receptor (TLR) on non-HIV CM. Methods This observational cohort study was done in two stages: a discovery stage and a validation stage. A case-control genetic association study was conducted between 159 non-HIV CM patients and 468 healthy controls. TLR SNPs significantly related to susceptibility went further validation in a second cohort of 583 subjects from a certain district. Associations among TLR SNPs, cerebrospinal fluid (CSF) cytokine concentrations, and clinical severity were explored in a third cohort of 99 previously untreated non-HIV CM patients. Logistic regression model was used to determine the independent predictors for disease severity. Findings In the discovery stage, eight TLR SNPs exhibited significant genetic susceptibility to non-HIV CM, one of which was validated in a population validation of HIV-infected cases while none survived in non-HIV cases. CSF cytokine detections showed that 18 cytokines were significantly over-expressed in severely ill patients. Two of the 8 SNPs (rs5743604 and rs3804099) were also significantly associated with disease severity. Specifically, the rs3804099 C/T genotype was further found to be correlated to 12 of the 18 up-regulated cytokines in severe patients. In addition, high levels of interleukin (IL)-10 in CSF (OR 2·97, 95% CI 1·49–5·90; p = 0·002) was suggested as an independent predictor for severity after adjusted for possible confounders. Interpretation TLR participates in both the occurrence and the pathogenesis of non-HIV CM. The in situ immune responses of CM were under genetic influence of TLR and contributed to disease severity. Fund National Natural Science Foundation of China and National Key Basic Research Program of China (973 Program).
Collapse
Affiliation(s)
- Ying-Kui Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji-Qin Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-Ying Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling-Hong Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ching-Wan Yip
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya-Hong Chen
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian HIV/AIDS Diagnosis and Treatment Center, Fuzhou, Fujian, China
| | - Hua Li
- Department of Neurology, No. 476 Hospital of Fuzhou General Hospital, Nanjing Military Region, Chinese People's Liberation Army, Fuzhou, Fujian, China
| | - Li-Ping Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xin-Hua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Santiago V, Rezvani K, Sekine T, Stebbing J, Kelleher P, Armstrong-James D. Human NK Cells Develop an Exhaustion Phenotype During Polar Degranulation at the Aspergillus fumigatus Hyphal Synapse. Front Immunol 2018; 9:2344. [PMID: 30405602 PMCID: PMC6204393 DOI: 10.3389/fimmu.2018.02344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary aspergillosis is an opportunistic fungal infection affecting immunocompromised individuals. Increasing understanding of natural killer (NK) cell immunobiology has aroused considerable interest around the role of NK cells in pulmonary aspergillosis in the immunocompromised host. Murine studies indicate that NK cells play a critical role in pulmonary clearance of A. fumigatus. We show that the in vitro interaction between NK cells and A. fumigatus induces partial activation of NK cell immune response, characterised by low-level production of IFN-γ, TNF-α, MIP-1α, MIP-1β, and RANTES, polarisation of lytic granules and release of fungal DNA. We observed a contact-dependent down-regulation of activatory receptors NKG2D and NKp46 on the NK cell surface, and a failure of full granule release. Furthermore, the NK cell cytokine-mediated response to leukaemic cells was impaired in the presence of A. fumigatus. These observations suggest that A. fumigatus-mediated NK cell immunoparesis may represent an important mechanism of immune evasion during pulmonary aspergillosis.
Collapse
Affiliation(s)
- Virginia Santiago
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Centre, Houston, TX, United States
| | - Takuya Sekine
- Kennedy Institute, University of Oxford, Oxford, United Kingdom
| | - Justin Stebbing
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Peter Kelleher
- Faculty of Medicine, Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - Darius Armstrong-James
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| |
Collapse
|
26
|
Wozniak KL. Interactions of Cryptococcus with Dendritic Cells. J Fungi (Basel) 2018; 4:jof4010036. [PMID: 29543719 PMCID: PMC5872339 DOI: 10.3390/jof4010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
27
|
Abstract
Eosinophils are the prominent cells in asthma, allergic bronchopulmonary mycosis (ABPMs), and fungal-sensitization-associated asthma, but their roles in the immunopathology of these disorders are not well understood. Moreover, the immunological mechanisms underlying the molecular direct effector interactions between fungi and eosinophils are rare and not fully known. Here, we provide an overview of eosinophil contributions to allergic asthma and ABPMs. We also revise the major general mechanisms of fungal recognition by eosinophils and consider past and recent advances in our understanding of the molecular mechanisms associated with eosinophil innate effector responses to different fungal species relevant to ABPMs (Alternaria alternata, Candida albicans, and Aspergillus fumigatus). We further examine and speculate about the therapeutic relevance of these findings in fungus-associated allergic pulmonary diseases.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Unit of Xerem, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Campuzano A, Wormley FL. Innate Immunity against Cryptococcus, from Recognition to Elimination. J Fungi (Basel) 2018. [PMID: 29518906 PMCID: PMC5872336 DOI: 10.3390/jof4010033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast's large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR-ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
29
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Sato K, Kawakami K. Recognition of Cryptococcus neoformans by Pattern Recognition Receptors and its Role in Host Defense to This Infection. Med Mycol J 2018; 58:J83-J90. [PMID: 28855484 DOI: 10.3314/mmj.17.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cryptococcus neoformans is a yeast-type opportunistic fungal pathogen with a capsule structure consisting of polysaccharides, such as glucuronoxylomannan and galactoxylomannan, and infects the lungs via an air-borne route. Most healthy individuals undergo asymptomatic infection with granulomatous lesions in the lungs caused by C. neoformans. However, immunocompromised hosts with severely impaired cellular immunity, such as those with acquired immune deficiency syndrome (AIDS), often suffer from disseminated infection into the central nervous system, leading to life-threatening meningoencephalitis. The recognition of pathogen-associated molecular patterns (PAMPs) by macrophages and dendritic cells plays an important role as the first line of host defense in the elimination of pathogens. Recently, numerous pattern recognition receptors (PRRs) that recognize these PAMPs have been identified. Also, the involvement of these PRRs, such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs), in cryptococcal infection has been analyzed. In particular, TLR9, NLR family pyrin domain-containing 3 (NLRP3), Dectin-2, mannose receptor (MR), and DC-SIGN have been found to recognize the DNA, cell wall components, intracellular polysaccharides, and mannoproteins, respectively. Future studies are expected to promote elucidation of the mechanisms of host immune response to C. neoformans, which will lead to the development of new vaccines and therapies for cryptococcal infection.
Collapse
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology,Tohoku University Graduate School of Medicine.,Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology,Tohoku University Graduate School of Medicine
| |
Collapse
|
31
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
32
|
Ashigai H, Komano Y, Wang G, Kawachi Y, Sunaga K, Yamamoto R, Takata R, Miyake M, Yanai T. Polysaccharide from black currant ( Ribes nigrum L.) stimulates dendritic cells through TLR4 signaling. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2017; 36:141-145. [PMID: 29038769 PMCID: PMC5633528 DOI: 10.12938/bmfh.16-029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 11/05/2022]
Abstract
Black currant (Ribes nigrum) has various beneficial properties for human health. In particular, polysaccharide from black currant was found to be an immunostimulating food ingredient and was reported to have antitumor activity in a mouse model. We named it cassis polysaccharide (CAPS). In a previous study, CAPS administration caused tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production in vitro and in vivo, but the immunological mechanism of CAPS was not demonstrated. In this study, we revealed the CAPS immunostimulating mechanism in vitro. First, we found that CAPS activated dendritic cells (DCs). Second, we investigated whether it depends on Toll-like receptor 4 (TLR4) and myeloid differentiation primary response (Myd). We concluded that CAPS stimulates DCs through Myd88 depending TLR4 signaling and activates Th1-type cytokine release.
Collapse
Affiliation(s)
- Hiroshi Ashigai
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628, Japan
| | - Yuta Komano
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628, Japan
| | - Guanying Wang
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628, Japan
| | - Yasuji Kawachi
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628, Japan
| | - Kazuko Sunaga
- Marketing Department, Mercian Corporation, 4-10-2 Nakano, Nakano-ku, Tokyo 164-0001, Japan
| | - Reiko Yamamoto
- Research Laboratories for Wine Technologies, Kirin Company, Ltd., 4-9-1 Johnan, Fujisawa 251-0057, Japan
| | - Ryoji Takata
- Research Laboratories for Wine Technologies, Kirin Company, Ltd., 4-9-1 Johnan, Fujisawa 251-0057, Japan
| | - Mika Miyake
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628, Japan
| | - Takaaki Yanai
- Research Laboratories for Wine Technologies, Kirin Company, Ltd., 4-9-1 Johnan, Fujisawa 251-0057, Japan
| |
Collapse
|
33
|
Taghavi M, Khosravi A, Mortaz E, Nikaein D, Athari SS. Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections. Eur J Pharmacol 2017; 808:8-13. [DOI: 10.1016/j.ejphar.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022]
|
34
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
35
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
36
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Medvedev AE, Murphy M, Zhou H, Li X. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses. Immunol Rev 2016; 266:109-22. [PMID: 26085210 DOI: 10.1111/imr.12298] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
38
|
Murphy MB, Medvedev AE. Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity. J Leukoc Biol 2016; 99:839-50. [PMID: 26965636 PMCID: PMC6608019 DOI: 10.1189/jlb.2ru1215-575r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Sensing of microbial pathogens and endogenous "alarmins" by macrophages and dendritic cells is reliant on pattern recognition receptors, including membrane-associated TLRs, cytosolic nucleotide-binding and oligomerization domain leucine-rich repeat-containing receptors, retinoic acid-inducible gene I-like receptors, and absent in melanoma 2-like receptors. Engagement of TLRs elicits signaling pathways that activate inflammatory genes whose expression is regulated by chromatin-modifying complexes and transcription factors. Long noncoding RNAs have emerged as new regulators of inflammatory mediators in the immune system. They are expressed in macrophages, dendritic cells, neutrophils, NK cells, and T- and B-lymphocytes and are involved in immune cell differentiation and activation. Long noncoding RNAs act via repression or activation of transcription factors, modulation of stability of mRNA and microRNA, regulation of ribosome entry and translation of mRNAs, and controlling components of the epigenetic machinery. In this review, we focus on recent advances in deciphering the mechanisms by which long noncoding RNAs regulate TLR-driven responses in macrophages and dendritic cells and discuss the involvement of long noncoding RNAs in endotoxin tolerance, autoimmune, and inflammatory diseases. The dissection of the role of long noncoding RNAs will improve our understanding of the mechanisms of regulation of inflammation and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Michael B Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
39
|
DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans. Infect Immun 2016; 84:1879-86. [PMID: 27068093 DOI: 10.1128/iai.00222-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/17/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response to C. neoformans Infectious outcomes in DAP12(-/-) mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12(-/-) mice. In contrast to WT NK cells, DAP12(-/-) NK cells are able to repress C. neoformans growth in vitro Additionally, DAP12(-/-) macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing of C. neoformans These findings suggest that DAP12 acts as a brake on the pulmonary immune response to C. neoformans by promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages.
Collapse
|
40
|
Innate host defenses against Cryptococcus neoformans. J Microbiol 2016; 54:202-11. [PMID: 26920880 DOI: 10.1007/s12275-016-5625-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and remains the third most common invasive fungal infection among organ transplant recipients. The administration of highly active antiretroviral therapy (HAART) has resulted in a decrease in the number of cases of AIDS-related cryptococcosis in developed countries, but in developing countries where HAART is not readily available, Cryptococcus is still a major concern. Therefore, there is an urgent need for the development of novel therapies and/or vaccines to combat cryptococcosis. Understanding the protective immune responses against Cryptococcus is critical for development of vaccines and immunotherapies to combat cryptococcosis. Consequently, this review focuses on our current knowledge of protective immune responses to C. neoformans, with an emphasis on innate immune responses.
Collapse
|
41
|
Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome. Front Microbiol 2016; 7:105. [PMID: 26903984 PMCID: PMC4746234 DOI: 10.3389/fmicb.2016.00105] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Camaron R Hole
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Karen L Wozniak
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
42
|
Abstract
Cryptococcosis is caused by the fungal genus Cryptococcus. Cryptococcosis, predominantly meningoencephalitis, emerged with the HIV pandemic, primarily afflicting HIV-infected patients with profound T-cell deficiency. Where in use, combination antiretroviral therapy has markedly reduced the incidence of and risk for disease, but cryptococcosis continues to afflict those without access to therapy, particularly in sub-Saharan Africa and Asia. However, cryptococcosis also occurs in solid organ transplant recipients and patients with other immunodeficiencies as well as those with no known immunodeficiency. This article reviews innate and adaptive immune responses to C. neoformans, with an emphasis on recent studies on the role of B cells, natural IgM and Fc gamma receptor polymorphisms in resistance to cryptococcosis.
Collapse
Affiliation(s)
- Soma Rohatgi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
43
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
44
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
He M, Ichinose T, Song Y, Yoshida Y, Kobayashi F, Maki T, Yoshida S, Takano H, Shibamoto T, Sun G. The Role of Toll-Like Receptors and Myeloid Differentiation Factor 88 in Bjerkandera adusta-Induced Lung Inflammation. Int Arch Allergy Immunol 2015; 168:96-106. [PMID: 26641462 DOI: 10.1159/000441895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, a cluster of patients with an intractable allergic fungal cough who were characterized by sensitization to Bjerkandera adusta was reported. In the present study, the role of Toll-like receptors and myeloid differentiation factor 88 (MyD88) in B. adusta-induced lung inflammation was investigated. METHODS Wild-type (WT), TLR2-/-,TLR4-/-, and MyD88-/- BALB/c mice were intratracheally challenged with B. adusta 4 times at 2-week intervals. Lung pathology, bronchoalveolar lavage fluid (BALF) cytological profiles, and inflammatory mediators in BALF were investigated. Bone marrow-derived macrophages (BMDM) from TLR2-/-,TLR4-/-, TLR2/4-/-, TLR7/9-/-,MyD88-/-, and WT C57BL/6J mice were stimulated with B. adusta for 12 h, and inflammatory mediators in the culture medium were measured. RESULTS B. adusta caused lung inflammation along with Th2 cytokine [interleukin (IL)-5 and IL-13] and eosinophil-related chemokine [eotaxin and monocyte chemotactic protein (MCP-3)] production, an increase in eosinophils in BALF, and eosinophil infiltration in the airways in WT and TLR4-/- mice. However, Th2 and eosinophil-related responses in TLR2-/- and MyD88-/- mice were low or undetectable. The induction of neutrophils and IL-6, IL-12, IL-17A, and MCP-1 in the BALF of MyD88-/- mice was attenuated compared to that in WT mice. The induction of IL-6, TNF-α, MCP-1, and macrophage inflammatory protein-1α was reduced or undetectable in B. adusta-stimulated BMDM from TLR7/9-/- and MyD88-/- mice compared to WT mice. CONCLUSIONS These results suggest that TLR2 and the adapter protein MyD88 may play an important role in the induction of eosinophils by B. adusta. However, TLR7/9-MyD88 might be important in the induction of neutrophils and the relevant inflammatory mediators, especially IL-17A.
Collapse
Affiliation(s)
- Miao He
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Williamson PR. Post-infectious inflammatory response syndrome (PIIRS): Dissociation of T-cell-macrophage signaling in previously healthy individuals with cryptococcal fungal meningoencephalitis. ACTA ACUST UNITED AC 2015; 2. [PMID: 27064474 PMCID: PMC4825797 DOI: 10.14800/macrophage.1078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus is an important cause of central nervous system infections in both immunocompromised patients such as those with HIV/AIDS as well as previously healthy individuals. Deficiencies in T-cell activation are well-known to be highly associated with host susceptibility in HIV/AIDS as well in animal modeling studies, resulting in poor microbiological control and little host inflammation. However, recent studies conducted in human patients have demonstrated roles for macrophage signaling defects as an important association with disease susceptibility. For example, an autoantibody to granulocyte monocyte stimulating factor (GMCSF) resulted in defective STAT5 signaling and susceptibility to cryptococcosis. In addition, severe cases of cryptococcal meningo-encephalitis in previously healthy patients, with or without anti-GMCSF autoantibody, developed a highly activated intrathecal T-cell population but had defects in effective macrophage polarization. Intrathecal inflammation correlated with neurological damage, measured by the axonal damage protein, neurofilament light chain 1. Based on these studies, we propose a new syndrome of cryptococcal post-infectious inflammatory response syndrome (PIIRS) defined in previously healthy patients with cryptococcal meningo-encephalitis as the presence of a poor clinical response in the setting of at least 1 month of amphotericin-based fungicidal therapy and sterile cerebrospinal cultures. These findings are discussed in light of the potential for improving therapy.
Collapse
Affiliation(s)
- Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
47
|
Ishii K, Kawakami K. [Up-to-date findings in the host defence mechanism to cryptococcus infection]. Med Mycol J 2015; 55:J107-14. [PMID: 25231225 DOI: 10.3314/mmj.55.j107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cryptococcus neoformans is a medically important opportunistic fungal pathogen with a polysaccharide capsule surrounding the yeast-like cells. In hosts with impaired cell-mediated immunity such as AIDS, uncontrolled infection causes life-threatening meningoencephalitis. In immunocompetent individuals, the host immune response usually limits the growth of the fungal pathogen at the primary infected site, where it may persist, without completely eradicated, in a latent state because of its ability to escape from killing by macrophages. Th1 response in adaptive immunity is essential for the host defense to cryptococcal infection, in which interferon (IFN)-γ polarizes innate macrophages into fungicidal M1 macrophages. Recently, we found that caspase recruitment domain family member (CARD9), an adaptor protein in a signal transduction triggered by C-type lectin receptors, plays a key role in the early production of IFN-γ at the site of infection by recruiting NK cells and CD4(+) and CD8(+) memory-phenotype T cells. We also found that IL-4 produced by Th2 cells stimulates broncoepithelial cells to secrete mucin, which may lead to promotion in the mucociliary clearance of C. neoformans. Here, we summarize the up-to-date findings in the host defense mechanism to this infection with focusing on our recent data.
Collapse
Affiliation(s)
- Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
48
|
Affiliation(s)
- Chrissy M. Leopold Wager
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Gibson JF, Johnston SA. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 2014; 78:76-86. [PMID: 25498576 PMCID: PMC4503824 DOI: 10.1016/j.fgb.2014.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 10/25/2022]
Abstract
The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Josie F Gibson
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK
| | - Simon A Johnston
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK.
| |
Collapse
|
50
|
Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection. Pediatr Infect Dis J 2014; 33:e310-5. [PMID: 24797996 DOI: 10.1097/inf.0000000000000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Klebsiella pneumoniae is a common cause of nosocomial pneumonia, especially in children. Toll-like receptors plays an important role in defense against this pathogen. The impact of human TLR6 polymorphisms on susceptibility to K. pneumoniae infection is poorly understood. The aim of the present work was to determine whether single nucleotide polymorphisms in TLR6 are associated with altered immune responses to K. pneumoniae. METHODS The TLR6 coding region was sequenced in 126 K. pneumoniae culture-positive patients and 142 hospitalized K. pneumoniae culture-negative controls. RESULTS The frequency of V327M polymorphism was found to be significantly higher in patients than that in controls (16.7% vs. 7.7%). In vitro studies showed that V327M polymorphism did not impair TLR6 expression in transfected HEK 293T cells. Further studies demonstrated that V327M polymorphism was associated with increased IL-8 mRNA expression in transfected HEK 293T cells when stimulated with K. pneumoniae and the specific ligand for TLR2/TLR6 heterodimers known as Pam2CSK4. The present data showed V327M polymorphism to be associated with increased apoptosis of HEK 293T cells when challenged with K. pneumoniae. CONCLUSIONS Taken together, these data indicated that TLR6 V327M may be involved in mediating deleterious inflammatory responses and modulating host susceptibility to K. pneumoniae. These results provide new insight into the pathophysiologic role of TLR6 V327M in the innate immune response to bacterial infection in human.
Collapse
|