1
|
Zhiping LL, Ong LT, Chatterjee D, Tan SM, Bhattacharjya S. Binary and ternary complexes of FLNa-Ig21 with cytosolic tails of αMß2 integrin reveal dual role of filamin mediated regulation. Biochim Biophys Acta Gen Subj 2021; 1865:130005. [PMID: 34509570 DOI: 10.1016/j.bbagen.2021.130005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytoskeletal protein filamin A is critical for the outside-in signaling of integrins. Although molecular mechanisms of filamin-integrin interactions are not fully understood. Mostly, the membrane distal (MD) part of the cytosolic tail (CT) of β subunit of integrin is known to interact with filamin A domain 21 (FLNa-Ig2). However, binary and ternary complexes of full-length CTs of leucocyte specific ß2 integrins with FLNa-Ig21 are yet to be elucidated. METHODS Binding interactions of the CTs of integrin αMß2 with FLNa-Ig21 are extensively investigated by NMR, ITC, cell-based functional assays and computational docking. RESULTS The αM CT demonstrates interactions with FLNa-Ig21 forming a binary complex. Filamin/αM interface is mediated by sidechain-sidechain interactions among non-polar and aromatic residues involving MP helix of αM and the canonical CD face of FLNa-Ig21. Functional assays delineated an interfacial residue Y1137 of αM CT is critical for in-cell binding to FLNa-Ig2. In addition, full-length ß2 CT occupies two distinct binding sites in complex with FLNa-Ig21. A ternary complex of FLNa-Ig21 with CTs has been characterized. In the ternary complex, αM CT moves away to a distal site of FLNa-Ig21 with fewer interactions. CONCLUSION Our findings demonstrate a plausible dual role of filamin in integrin regulation. The molecular interactions of the ternary complex are critical for the resting state of integrins whereas stable FLNa-Ig21/αM CT binary complex perhaps be required for the activated state. GENERAL SIGNIFICANCE Filamin binding to both α and β CTs of other integrins could be essential in regulating bidirectional signaling mechanisms.
Collapse
Affiliation(s)
- Lewis Lu Zhiping
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepak Chatterjee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
2
|
Zeng Q, Gao Y, Yu H, Zhu W, Wang Q, Long Q, Fan Z, Xiao B. Stick, stretch, and scan imaging method for DNA and filaments. RSC Adv 2021; 11:36060-36065. [PMID: 35492749 PMCID: PMC9043539 DOI: 10.1039/d1ra07067c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Biomolecules and organelles usually undergo changes to their structure or form as a result of mechanical stretching or stimulation. It is critical to be able to observe these changes and responses, which trigger mechano-chemical coupling or signal transduction. Advanced techniques have been developed to observe structure and form during manipulation; however, these require sophisticated methods. We have developed a simple approach to observe fine structure after stretching without fluorophore labeling. DNAs or molecules on the cell surface were bound to magnetic microbeads, followed by stretching with a magnetic field. After fixing, staining, and drying, the samples were examined by scanning electron microscopy with no need to build a functional surface with complex processes. Straight DNAs were observed rather than random-walk-like loose polymers. In our cellular experiment, the magnetic beads were bound to a Jurkat cell and formed a rosette which was later stuck to the substrate. A 41.3 μm filament on the base of a filopodium was pulled out via integrin from a cell. Therefore, our method can reveal long structures up to hundreds of micrometers at nanometer resolution after stretching or twisting. Our approach could have wide applications in structure–function studies of biomolecules, and in mechanobiology and cell biology when diffraction cannot used. Magnetic force was applied to stretch single DNAs and cells which were stuck to magnetic beads and substrates via simple conjugation methods. Scanning electron microscopy images show that the filopodia of cells were pulled to extraordinary length.![]()
Collapse
Affiliation(s)
- Qiuling Zeng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Yuanyuan Gao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Hong Yu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Wei Zhu
- Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine Guangzhou Guangdong 510405 China.,Institute of Science and Technology, Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Quan Long
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Zhuo Fan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| | - Botao Xiao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China .,Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology Guangzhou 510006 China
| |
Collapse
|
3
|
Ong LT, Tan HF, Feng C, Qu J, Loh SC, Bhattacharyya S, Tan SM. The Systemic Lupus Erythematosus–Associated Single Nucleotide Polymorphism rs1143678 in Integrin αMCytoplasmic Tail Generates a 14-3-3ζ Binding Site That Is Proinflammatory. THE JOURNAL OF IMMUNOLOGY 2016; 198:883-894. [DOI: 10.4049/jimmunol.1601447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 02/02/2023]
|
4
|
Feng C, Wee WK, Chen H, Ong LT, Qu J, Tan HF, Tan SM. Expression of kindlin-3 in melanoma cells impedes cell migration and metastasis. Cell Adh Migr 2016; 11:419-433. [PMID: 27715393 DOI: 10.1080/19336918.2016.1243645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kindlins are a small family of 4.1-ezrin-radixin-moesin (FERM)-containing cytoplasmic proteins. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Kindlin-3 promotes integrin activation, clustering and outside-in signaling. Aberrant expression of kindlin-3 was reported in melanoma and breast cancer. Intriguingly, kindlin-3 has been reported to either positively or negatively regulate cancer cell metastasis. In this study, we sought to clarify the expression of kindlin-3 in melanoma cells and its role in melanoma metastasis. Two widely used metastatic mouse and human melanoma cell lines B16-F10 and M10, respectively, were examined and found to lack kindlin-3 mRNA and protein expression. When kindlin-3 was ectopically expressed in these cells, cell migration was markedly reduced. These are attributed to aberrant Rac1 and RhoA activation and overt membrane ruffling. Our data demonstrate for the first time that despite its well established role as a positive regulator of integrin-mediated cell adhesion, aberrant expression of kindlin-3 could lead to imbalanced RhoGTPases signaling that impedes rather than promotes cell migration.
Collapse
Affiliation(s)
- Chen Feng
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Wei-Kiat Wee
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Huizhi Chen
- b School of Materials Science & Engineering, Nanyang Technological University , Nanyang Avenue, Singapore
| | - Li-Teng Ong
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Jing Qu
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Hui-Foon Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Suet-Mien Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| |
Collapse
|
5
|
Guan S, Tan SM, Li Y, Torres J, Alex Law S. Function and conformation analyses of an aspartate substitution of the invariant glycine in the integrin βI domain α1-α1′ helix. Biochem Biophys Rep 2016; 7:214-217. [PMID: 28955909 PMCID: PMC5613341 DOI: 10.1016/j.bbrep.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/01/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022] Open
Abstract
We showed that the αLβ2 integrin with the non-functional mutation G150D cannot be induced with Mg/EGTA to express the mAb KIM127 epitope, which reports the leg-extended conformation. We extended the study to the αIIbβ3, an integrin without an αI domain. The equivalent mutation, i.e. G161D, also resulted in an expressible, but non-adhesive αIIbβ3 integrin. An NMR study of synthetic peptides spanning the α1-α1′ helix of the β3 I domain shows that both wild-type and mutant peptides are α-helical. However, whereas in the wild-type peptide this helix is continuous, the mutant presents a discontinuity, or kink, precisely at the site of mutation G161D. Our results suggest that the mutation may lock integrin heterodimers in a bent conformation that prevents integrin activation via conformational extension. Integrin αLβ2-G150D cannot be activated to an extended conformation. Integrin αIIbβ3-G161D can be expressed on transfectants. Transfectants expressing the αIIbβ3-G161D integrin cannot adhere to fibrinogen. The Asp locks the α1-α1′ helices to into a kinked structure.
Collapse
|
6
|
Qu J, Ero R, Feng C, Ong LT, Tan HF, Lee HS, Ismail MHB, Bu WT, Nama S, Sampath P, Gao YG, Tan SM. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Sci Rep 2015; 5:18491. [PMID: 26677948 PMCID: PMC4683439 DOI: 10.1038/srep18491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis.
Collapse
Affiliation(s)
- Jing Qu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chen Feng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Foon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Shan Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad H B Ismail
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wen-Ting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117597,Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
An Alternative Phosphorylation Switch in Integrin β2 (CD18) Tail for Dok1 Binding. Sci Rep 2015; 5:11630. [PMID: 26108885 PMCID: PMC4479986 DOI: 10.1038/srep11630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/01/2015] [Indexed: 11/23/2022] Open
Abstract
Integrins are involved in cell migration and adhesion. A large number of proteins interact with the cytoplasmic tails of integrins. Dok1 is a negative regulator of integrin activation and it binds to the phosphorylated membrane proximal NxxY motif in a number of integrin β tails. The β tail of the β2 integrins contains a non-phosphorylatable NxxF motif. Hence it is unclear how Dok1 associates with the β2 integrins. We showed in this study using NMR and cell based analyses that residues Ser745 and Ser756 in the integrin β2 tail, which are adjacent to the NxxF motif, are required for Dok1 interaction. NMR analyses detected significant chemical shift changes and higher affinity interactions between Dok1 phospho-tyrosine binding (PTB) domain and integrin β2 tail peptide containing pSer756 compared to pSer745. The phosphorylated β2 peptide occupies the canonical ligand binding pocket of Dok1 based on the docked structure of the β2 tail-Dok1 PTB complex. Taken together, our data suggest an alternate phosphorylation switch in β2 integrins that regulates Dok1 binding. This could be important for cells of the immune system and their functions.
Collapse
|
8
|
Guan S, Tan SM, Li Y, Torres J, Uzel G, Xiang L, Law SKA. Characterization of single amino acid substitutions in the β2 integrin subunit of patients with leukocyte adhesion deficiency (LAD)-1. Blood Cells Mol Dis 2014; 54:177-82. [PMID: 25514840 DOI: 10.1016/j.bcmd.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
Leukocyte adhesion deficiency 1 (LAD-1) is caused by defects in the β2 integrin subunit. We studied 18 missense mutations, 14 of which fail to support the surface expression of the β2 integrins. Integrins with the β2-G150D mutation fail to bind ligands, possibly due to the failure of the α1 segment of the βI domain to assume an α-helical structure. Integrins with the β2-G716A mutation are not maintained in their resting states, and the patient has the severe phenotype of LAD-1. The β2-S453N and β2-P648L mutants support the expression of integrins and adhesion functions. They should be re-classified as polymorphic variants.
Collapse
Affiliation(s)
- Siyu Guan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Gulbu Uzel
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Liming Xiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - S K Alex Law
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin. PLoS One 2013; 8:e66096. [PMID: 23840404 PMCID: PMC3688720 DOI: 10.1371/journal.pone.0066096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/02/2013] [Indexed: 12/02/2022] Open
Abstract
Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs) were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.
Collapse
|
10
|
Xue ZH, Feng C, Liu WL, Tan SM. A role of kindlin-3 in integrin αMβ2 outside-in signaling and the Syk-Vav1-Rac1/Cdc42 signaling axis. PLoS One 2013; 8:e56911. [PMID: 23437269 PMCID: PMC3577682 DOI: 10.1371/journal.pone.0056911] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
Integrins mediate cell-cell and cell-extracellular matrix attachments. Integrins are signaling receptors because their cytoplasmic tails are docking sites for cytoskeletal and signaling proteins. Kindlins are a family of band 4.1-ezrin-radixin-moesin-containing intracellular proteins. Apart from regulating integrin ligand-binding affinity, recent evidence suggests that kindlins are involved in integrin outside-in signaling. Kindlin-3 is expressed in platelets, hematopoietic cells and endothelial cells. In humans, loss of kindlin-3 expression accounts for the rare autosomal disease leukocyte adhesion deficiency (LAD) type III that is characterized by bleeding disorders and defective recruitment of leukocytes into sites of infection. Studies have shown that the loss of kindlin-3 expression leads to poor ligand-binding properties of β1, β2 and β3 integrin subfamilies. The leukocyte-restricted β2 integrin subfamily comprises four members, namely αLβ2, αMβ2, αXβ2 and αDβ2. Integrin αMβ2 mediates leukocyte adhesion, phagocytosis, degranulation and it is involved in the maintenance of immune tolerance. Here we provide further evidence that kindlin-3 is required for integrin αMβ2-mediated cell adhesion and spreading using transfected K562 cells that expressed endogenous kindlin-3 but not β2 integrins. K562 stable cell line expressing si-RNA targeting kindlin-3, but not control-si-RNA, and transfected with constitutively activated integrin αMβ2N329S adhered and spread poorly on iC3b. We also show that kindlin-3 is required for the integrin αMβ2-Syk-Vav1 signaling axis that regulates Rac1 and Cdc42 activities. These findings reinforce a role for kindlin-3 in integrin outside-in signaling.
Collapse
Affiliation(s)
- Zhi-Hong Xue
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chen Feng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei-Ling Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
11
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
12
|
Wang W, Jiang Y, Wang C, Luo BH. Effects of the Association between the α-Subunit Thigh and the β-Subunit EGF2 Domains on Integrin Activation and Signaling. Biochemistry 2011; 50:9264-72. [DOI: 10.1021/bi200744g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Yan Jiang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Chen Wang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Bing-Hao Luo
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Schürpf T, Springer TA. Regulation of integrin affinity on cell surfaces. EMBO J 2011; 30:4712-27. [PMID: 21946563 DOI: 10.1038/emboj.2011.333] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/22/2011] [Indexed: 11/09/2022] Open
Abstract
Lymphocyte activation triggers adhesiveness of lymphocyte function-associated antigen-1 (LFA-1; integrin α(L)β(2)) for intercellular adhesion molecules (ICAMs) on endothelia or antigen-presenting cells. Whether the activation signal, after transmission through multiple domains to the ligand-binding αI domain, results in affinity changes for ligand has been hotly debated. Here, we present the first comprehensive measurements of LFA-1 affinities on T lymphocytes for ICAM-1 under a broad array of activating conditions. Only a modest increase in affinity for soluble ligand was detected after activation by chemokine or T-cell receptor ligation, conditions that primed LFA-1 and robustly induced lymphocyte adhesion to ICAM-1 substrates. By stabilizing well-defined LFA-1 conformations by Fab, we demonstrate the absolute requirement of the open LFA-1 headpiece for adhesiveness and high affinity. Interaction of primed LFA-1 with immobilized but not soluble ICAM-1 triggers energy-dependent affinity maturation of LFA-1 to an adhesive, high affinity state. Our results lend support to the traction or translational motion dependence of integrin activation.
Collapse
Affiliation(s)
- Thomas Schürpf
- Department of Pathology, Harvard Medical School, Immune Disease Institute and Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
14
|
Requirement of open headpiece conformation for activation of leukocyte integrin alphaXbeta2. Proc Natl Acad Sci U S A 2010; 107:14727-32. [PMID: 20679211 DOI: 10.1073/pnas.1008663107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Negative stain electron microscopy (EM) and adhesion assays show that alpha(X)beta(2) integrin activation requires headpiece opening as well as extension. An extension-inducing Fab to the beta(2) leg, in combination with representative activating and inhibitory Fabs, were examined for effect on the equilibrium between the open and closed headpiece conformations. The two activating Fabs stabilized the open headpiece conformation. Conversely, two different inhibitory Fabs stabilized the closed headpiece conformation. Adhesion assays revealed that alpha(X)beta(2) in the extended-open headpiece conformation had high affinity for ligand, whereas both the bent conformation and the extended-closed headpiece conformation represented the low affinity state. Intermediate integrin affinity appears to result not from a single conformational state, but from a mixture of equilibrating conformational states.
Collapse
|
15
|
Quek BZ, Lim Y, Lin J, Tan T, Chan J, Biswas A, Schwarz H. CD137 enhances monocyte–ICAM-1 interactions in an E-selectin-dependent manner under flow conditions. Mol Immunol 2010; 47:1839-47. [DOI: 10.1016/j.molimm.2009.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
|
16
|
A Transmembrane Polar Interaction Is Involved in the Functional Regulation of Integrin αLβ2. J Mol Biol 2010; 398:569-83. [DOI: 10.1016/j.jmb.2010.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/30/2023]
|
17
|
Domadia PN, Li YF, Bhunia A, Mohanram H, Tan SM, Bhattacharjya S. Functional and structural characterization of the talin F0F1 domain. Biochem Biophys Res Commun 2009; 391:159-65. [PMID: 19903453 DOI: 10.1016/j.bbrc.2009.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
The globular head domain of talin, a large multi-domain cytoplasmic protein, is required for inside-out activation of the integrins, a family of heterodimeric transmembrane cell adhesion molecules. Talin head contains a FERM domain that is composed of F1, F2, and F3 subdomains. A F0 subdomain is located N-terminus to F1. The F3 contains a canonical phosphotyrosine binding (PTB) fold that directly interacts with the membrane proximal NPxY/F motif in the integrin beta cytoplasmic tail. This interaction is stabilized by the F2 that interacts with the lipid head-groups of the plasma membrane. In comparison to F2 and F3, the properties of the F0F1 remains poorly characterized. Here, we showed that F0F1 is essential for talin-induced activation of integrin alphaLbeta2 (LFA-1). F0F1 has a high content of beta-sheet secondary structure, and it tends to homodimerize that may provide stability against proteolysis and chaotrope induced unfolding.
Collapse
Affiliation(s)
- Prerna N Domadia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Li CJ, Chang JK, Chou CH, Wang GJ, Ho ML. The PI3K/Akt/FOXO3a/p27Kip1 signaling contributes to anti-inflammatory drug-suppressed proliferation of human osteoblasts. Biochem Pharmacol 2009; 79:926-37. [PMID: 19883628 DOI: 10.1016/j.bcp.2009.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 12/17/2022]
Abstract
Akt has been reported to suppress p27(Kip1) promoter activity through Forkhead box O (FOXO) in different kinds of cells. Previous studies indicated that anti-inflammatory drugs up-regulated p27(Kip1), and this effect might play an important role in anti-inflammatory drug-induced cell cycle arrest of human osteoblasts (hOBs). In this study, we hypothesized that these drugs might increase p27(Kip1) expression in hOBs by altering the Akt/FOXO signaling. We tested this hypothesis by examining the influences of three anti-inflammatory drugs on the levels and/or activities of Akt, FOXO and p27(Kip1) as well as the relationship between these factors and proliferation of hOBs. We tested the effects of indomethacin (10(-5) and 10(-4)M), celecoxib (10(-6) and 10(-5)M), and dexamethasone (10(-7) and 10(-6)M) using PI3K inhibitor, LY294002 (10(-5)M) as the basis of comparison. The three drugs suppressed the canonical level of phosphorylated Akt in hOBs. This was accompanied by elevated FOXO3a level and increased promoter activity, mRNA expression and protein level of p27(Kip1). Furthermore, the anti-inflammatory drugs suppressed the EGF-induced increases in proliferation, phosphorylation, and nucleus translocation of Akt. Simultaneously, they suppressed EGF-induced decreases of FOXO3a nucleus accumulation and p27(Kip1) mRNA expression. On the other hand, FOXO silencing significantly attenuated the drug-induced up-regulation of p27(Kip1) and suppression of proliferation in hOBs. To the best of our knowledge, this study represents the first to demonstrate that Akt/FOXO3a/p27(Kip1) pathway contributes to suppression of hOB proliferation by anti-inflammatory drugs. We suggest that anti-inflammatory drugs suppress hOB proliferation, at least partly, through inactivating Akt, activating FOXO3a, and eventually up-regulating p27(Kip1) expression.
Collapse
Affiliation(s)
- Ching-Ju Li
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Lee WG, Demirci U, Khademhosseini A. Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol (Camb) 2009; 1:242-51. [PMID: 20023735 DOI: 10.1039/b819201d] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.
Collapse
Affiliation(s)
- Won Gu Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|