1
|
Bruzzaniti S, Piemonte E, Lepore MT, Galgani M. Anti-viral innate immunity: Is it where type 1 diabetes really begins? Diabetes Metab Res Rev 2023:e3623. [PMID: 36764821 DOI: 10.1002/dmrr.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Sara Bruzzaniti
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Erica Piemonte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Teresa Lepore
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| | - Mario Galgani
- Institute Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
3
|
Costa FRC, Leite JA, Rassi DM, da Silva JF, Elias-Oliveira J, Guimarães JB, Foss-Freitas MC, Câmara NOS, Pontillo A, Tostes RC, Silva JS, Carlos D. NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep 2021; 35:109176. [PMID: 34038731 DOI: 10.1016/j.celrep.2021.109176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic β cells. We show here that the protein NOD-like receptor family pyrin domain containing 1 (NLRP1) has a key role in the pathogenesis of mouse and human T1D. More specifically, downregulation of NLRP1 expression occurs during T helper 17 (Th17) differentiation, alongside greater expression of several molecules related to Th17 cell differentiation in a signal transducers and activators of transcription 3 (STAT3)-dependent pathway. These changes lead to a consequent increase in interleukin 17 (IL-17) production within the pancreas and higher incidence of diabetes in streptozotocin (STZ)-injected mice. Finally, in patients with T1D and a SNP (rs12150220) in NLRP1, there is a robust decrease in IL-17 levels in serum and in memory Th17 cells from peripheral blood mononuclear cells. Our results demonstrate that NLRP1 acts as a negative regulator of the Th17 cell polarization program, making it an interesting target for intervention during the early stages of T1D.
Collapse
Affiliation(s)
- Frederico R C Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Diane M Rassi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Josiane F da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jhefferson B Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Clinical Medicine, Internal Medicine Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, and Caswell Diabetes Institute University of Michigan, Ann Arbor, MI, USA
| | - Niels O S Câmara
- Department of Immunology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Fiocruz- Bi-Institutional Translational Medicine Platform, Ribeirão Preto, SP, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|
5
|
Audiger C, Lesage S. BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance. Immunol Cell Biol 2018; 96:1008-1017. [DOI: 10.1111/imcb.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| |
Collapse
|
6
|
Lee CN, Lew AM, Wu L. The potential role of dendritic cells in the therapy of Type 1 diabetes. Immunotherapy 2014; 5:591-606. [PMID: 23725283 DOI: 10.2217/imt.13.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of T-cell mediated autoimmune destruction of pancreatic islet β-cells. The two current treatments for T1D are based on insulin or islet-cell replacement rather than the pathogenesis of T1D and remain problematic. Islet/pancreas transplantation does not cater for the majority of sufferers due to the lack of supply of organs and the need for continuous immunosuppression regimens. The mainstay treatment is insulin replacement, but this is disruptive to lifestyle and does not protect against severe long-term complications. An early vaccination and long-term restoration of immune tolerance to self-antigens in T1D patients (reversing the immunopathogenesis of the disease) would be preferable. Dendritic cells (DCs) are potent APCs and play an important role in inducing and maintaining immune tolerance. Targeting DCs through different DC surface molecules shows effective modulation of immune responses. Their feasibility for immunotherapy to prolong transplant survival and cancer immunotherapy has been demonstrated. Therefore, DCs could potentially be used in the treatment of autoimmune diseases. This review summarizes new insights into DCs as a potential therapeutic target for the treatment of T1D.
Collapse
Affiliation(s)
- Chin-Nien Lee
- Molecular Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | | | |
Collapse
|
7
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
8
|
Ting C, Bansal V, Batal I, Mounayar M, Chabtini L, El Akiki G, Azzi J. Impairment of immune systems in diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:62-75. [PMID: 23393672 DOI: 10.1007/978-1-4614-5441-0_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that involves the progressive destruction of the insulin-producing beta cells in the islets of langerhans. It is a complex process that results from the loss of tolerance to insulin and other beta-cell-specific antigens. Various genetic and environmental factors have been studied so far, but precise causation has yet to be established. Numerous studies in rodents and human subjects have been performed in order to elucidate the role of B and T cells, which determine the risk of development and progression of diabetes. These studies have demonstrated that while T1DM is fundamentally a T-cell-mediated autoimmune response, the development of this disease results from complex interactions between the adaptive and innate immune systems, with numerous cell types thought to contribute to pathogenesis. Like any complex disease, the variation in severity and incidence of T1DM can be attributed to a combination of genetic and environmental factors.
Collapse
Affiliation(s)
- Christopher Ting
- Transplantation Research Center Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev Mol Med 2012; 14:e15. [PMID: 22805744 DOI: 10.1017/erm.2012.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review discusses mechanisms that link allelic variants of major histocompatibility complex (MHC) class II molecules (MHCII) to immune pathology. We focus on HLA (human leukocyte antigen)-DQ (DQ) alleles associated with celiac disease (CD) and type 1 diabetes (T1D) and the role of the murine DQ-like allele, H2-Ag7 (I-Ag7 or Ag7), in murine T1D. MHCII molecules bind peptides, and alleles vary in their peptide-binding specificity. Disease-associated alleles permit binding of disease-inducing peptides, such as gluten-derived, Glu-/Pro-rich gliadin peptides in CD and peptides from islet autoantigens, including insulin, in T1D. In addition, the CD-associated DQ2.5 and DQ8 alleles are unusual in their interactions with factors that regulate their peptide loading, invariant chain (Ii) and HLA-DM (DM). The same alleles, as well as other T1D DQ risk alleles (and Ag7), share nonpolar residues in place of Asp at β57 and prefer peptides that place acidic side chains in a pocket in the MHCII groove (P9). Antigen-presenting cells from T1D-susceptible mice and humans retain CLIP because of poor DM editing, although underlying mechanisms differ between species. We propose that these effects on peptide presentation make key contributions to CD and T1D pathogenesis.
Collapse
|
10
|
Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells. Proc Natl Acad Sci U S A 2012; 109:3457-62. [PMID: 22328150 DOI: 10.1073/pnas.1115308109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of type 1 diabetes in the nonobese diabetic (NOD) mouse is preceded by an immune cell infiltrate in the pancreatic islets. The exact role of the attracted cells is still poorly understood. Chemokine CCL2/MCP-1 is known to attract CCR2(+) monocytes and dendritic cells (DCs). We have previously shown that transgenic expression of CCL2 in pancreatic islets via the rat insulin promoter induces nondestructive insulitis on a nonautoimmune background. We report here an unexpected reduction of diabetes development on the NOD background despite an increased islet cell infiltrate with markedly increased numbers of CD11c(+) CD11b(+) DCs. These DCs exhibited a hypoactive phenotype with low CD40, MHC II, CD80/CD86 expression, and reduced TNF-α but elevated IL-10 secretions. They failed to induce proliferation of diabetogenic CD4(+) T cells in vitro. Pancreatic lymph node CD4(+) T cells were down-regulated ex vivo and expressed the anergy marker Grail. By using an in vivo transfer system, we show that CD11c(+) CD11b(+) DCs from rat insulin promoter-CCL2 transgenic NOD mice were the most potent cells suppressing diabetes development. These findings support an unexpected beneficial role for CCL2 in type 1 diabetes with implications for current strategies interfering with the CCL2/CCR2 axis in humans, and for dendritic cell biology in autoimmunity.
Collapse
|
11
|
NOD dendritic cells stimulated with Lactobacilli preferentially produce IL-10 versus IL-12 and decrease diabetes incidence. Clin Dev Immunol 2011; 2011:630187. [PMID: 21716731 PMCID: PMC3119457 DOI: 10.1155/2011/630187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2) or lipoteichoic acid (LTA) from Staphylococcus aureus (TLR2 agonist). LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential.
Collapse
|
12
|
Lee AS, Ghoreishi M, Cheng WK, Chang TYE, Zhang YQ, Dutz JP. Toll-like receptor 7 stimulation promotes autoimmune diabetes in the NOD mouse. Diabetologia 2011; 54:1407-16. [PMID: 21340621 DOI: 10.1007/s00125-011-2083-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The role of Toll-like receptor 7 (TLR7), a sensor of viral and self RNA, in promoting autoimmune diabetes remains unclear. Our goal was to determine the effect of TLR7 stimulation on the priming and activation of diabetogenic CD8(+) T cells. METHODS We explored the effects of CL097 (TLR7/8 agonist) and immunoregulatory sequence 661 (IRS661, TLR7 inhibitor) on bone marrow-derived dendritic cells (BMDCs), diabetogenic CD8(+) T cell function and autoimmune diabetes onset in NOD and 8.3 NOD T cell receptor transgenic mice (8.3 NOD mice). RESULTS TLR7 stimulation of NOD BMDCs increased activation and production of proinflammatory cytokines. In vivo administration of CL097 activated T cells and dendritic cells and increased levels of proinflammatory cytokines and type 1/2 IFNs in NOD mice. In vivo antigen-specific cytotoxicity studies revealed enhanced cytotoxicity against islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP, an islet autoantigen) peptide pulsed targets in NOD mice treated with CL097 plus CD40 agonist. This combination treatment accelerated the onset of autoimmune diabetes in 8.3 NOD mice. Likewise, topical treatment of NOD mice with a TLR7 agonist accelerated diabetes onset. Spontaneous disease in 8.3 NOD mice and accelerated disease in CL097+CD40 agonist-treated 8.3 NOD mice were delayed by IRS661 treatment, which is associated with inhibition of the endogenous upregulation of IFN-α levels within the pancreatic lymph nodes. CONCLUSIONS/INTERPRETATION TLR7 stimulation accelerates the spontaneous onset of autoimmune diabetes in 8.3 NOD and NOD mice. Conversely, TLR7 inhibition prevents the early events associated with diabetogenesis.
Collapse
Affiliation(s)
- A S Lee
- Department of Dermatology and Skin Science, Child and Family Research Institute, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | |
Collapse
|
13
|
Jeong YJ, Kim JH, Kang JS, Lee WJ, Hwang YI. Mega-dose vitamin C attenuated lung inflammation in mouse asthma model. Anat Cell Biol 2010; 43:294-302. [PMID: 21267403 PMCID: PMC3026181 DOI: 10.5115/acb.2010.43.4.294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022] Open
Abstract
Asthma is a Th2-dependent disease mediated by IgE and Th2 cytokines, and asthmatic patients suffer from oxidative stresses from abnormal airway inflammation. Vitamin C is a micro-nutrient functioning as an antioxidant. When administered at a mega-dose, vitamin C has been reported to shift immune responses toward Th1. Thus, we tried to determine whether vitamin C exerted beneficial effects in asthma animal model. Asthma was induced in mice by sensitizing and challenging with ovalbumin. At the time of challenge, 3~5 mg of vitamin C was administered and the effects were evaluated. Vitamin C did not modulate Th1/Th2 balance in asthma model. However, it decreased airway hyperreactivity to methacholine, decreased inflammatory cell numbers in brochoalveolar lavage fluid, and moderate reduction of perivascular and peribronchiolar inflammatory cell infiltration. These results suggest that vitamin C administered at the time of antigen challenge exerted anti-inflammatory effects. Further studies based on chronic asthma model are needed to evaluate a long-term effect of vitamin C in asthma. In conclusion, even though vitamin C did not show any Th1/Th2 shifting effects in this experiment, it still exerted moderate anti-inflammatory effects. Considering other beneficial effects and inexpensiveness of vitamin C, mega-dose usage of vitamin C could be a potential supplementary modality for the management of asthma.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy and Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
14
|
Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 2010; 59:3139-47. [PMID: 20841611 PMCID: PMC2992776 DOI: 10.2337/db10-0542] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A number of clinical trials are underway to test whether mesenchymal stem cells (MSCs) are effective in treating various diseases, including type 1 diabetes. Although this cell therapy holds great promise, the optimal source of MSCs has yet to be determined with respect to major histocompatibility complex matching. Here, we examine this question by testing the ability of congenic MSCs, obtained from the NOR mouse strain, to reverse recent-onset type 1 diabetes in NOD mice, as well as determine the immunomodulatory effects of NOR MSCs in vivo. RESEARCH DESIGN AND METHODS NOR MSCs were evaluated with regard to their in vitro immunomodulatory function in the context of autoreactive T-cell proliferation and dendritic cell (DC) generation. The in vivo effect of NOR MSC therapy on reversal of recent-onset hyperglycemia and on immunogenic cell subsets in NOD mice was also examined. RESULTS NOR MSCs were shown to suppress diabetogenic T-cell proliferation via PD-L1 and to suppress generation of myeloid/inflammatory DCs predominantly through an IL-6-dependent mechanism. NOR MSC treatment of experimental type 1 diabetes resulted in long-term reversal of hyperglycemia, and therapy was shown to alter diabetogenic cytokine profile, to diminish T-cell effector frequency in the pancreatic lymph nodes, to alter antigen-presenting cell frequencies, and to augment the frequency of the plasmacytoid subset of DCs. CONCLUSIONS These studies demonstrate the inimitable benefit of congenic MSC therapy in reversing experimental type 1 diabetes. These data should benefit future clinical trials using MSCs as treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Mollie Jurewicz
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sunmi Yang
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Augello
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan G. Godwin
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert F. Moore
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamil Azzi
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Fiorina
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Mohamed H. Sayegh
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Reza Abdi
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Corresponding author: Reza Abdi,
| |
Collapse
|
15
|
Zhang J, Zhu N, Wang Q, Wang J, Ma Y, Qiao C, Li Y, Li X, Su B, Shen B. MEKK3 Overexpression Contributes to the Hyperresponsiveness of IL-12–Overproducing Cells and CD4+ T Conventional Cells in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:3554-63. [DOI: 10.4049/jimmunol.1000431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
|
17
|
Gaudreau S, Guindi C, Ménard M, Benabdallah A, Dupuis G, Amrani A. GM-CSF induces bone marrow precursors of NOD mice to skew into tolerogenic dendritic cells that protect against diabetes. Cell Immunol 2010; 265:31-6. [PMID: 20637454 DOI: 10.1016/j.cellimm.2010.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
We have reported that GM-CSF treatment of NOD mice suppressed diabetes by increasing the number of tolerogenic dendritic cells (tDCs) and Tregs in the periphery. Here, we have investigated whether GM-CSF acted on NOD bone marrow DCs precursors to skew their differentiation to tDCs. DCs were generated from the bone marrow of GM-CSF-treated (GM.BMDCs) and PBS-treated (PBS.BMDCs) NOD mice and were assessed for their ability to acquire tolerogenic properties. Upon LPS stimulation, GM.BMDCs became fully mature, expressed high levels of PD-L1 and produced more IL-10 and less IL-12p70 and IFN-gamma than PBS.BMDCs. In addition, LPS-stimulated GM.BMDCs possessed a reduced capacity to activate diabetogenic CD8(+) T cells in a PD-1/PD-L1-dependent manner. A single injection of LPS-stimulated GM.BMDCs in NOD mice resulted in long-term protection from diabetes, in contrast to LPS-stimulated PBS.BMDCs. Our results showed that GM-CSF-treatment acted on bone marrow precursors to skew their differentiation into tDCs that protected NOD mice against diabetes.
Collapse
Affiliation(s)
- Simon Gaudreau
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
18
|
Nikolic T, Welzen-Coppens JMC, Leenen PJM, Drexhage HA, Versnel MA. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy. Immunobiology 2009; 214:791-9. [PMID: 19628297 DOI: 10.1016/j.imbio.2009.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Hamilton-Williams EE, Martinez X, Clark J, Howlett S, Hunter KM, Rainbow DB, Wen L, Shlomchik MJ, Katz JD, Beilhack GF, Wicker LS, Sherman LA. Expression of diabetes-associated genes by dendritic cells and CD4 T cells drives the loss of tolerance in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:1533-41. [PMID: 19592648 DOI: 10.4049/jimmunol.0900428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In humans and NOD mice, defects in immune tolerance result in the spontaneous development of type-1-diabetes. Recent studies have ascribed a breakdown in tolerance to dysfunction in regulatory T cells that is secondary to reduced IL-2 production by T cells having the NOD diabetes susceptibility region insulin-dependent diabetes 3 (Idd3). In this study, we demonstrate a peripheral tolerance defect in the dendritic cells of NOD mice that is independent of regulatory T cells. NOD CD8 T cells specific for islet Ags fail to undergo deletion in the pancreatic lymph nodes. Deletion was promoted by expression of the protective alleles of both Idd3 (Il2) and Idd5 in dendritic cells. We further identify a second tolerance defect that involves endogenous CD4 T cell expression of the disease-promoting NOD alleles of these genetic regions. Pervasive insulitis can be reduced by expression of the Idd3 and Idd5 protective alleles by either the Ag-presenting cell or lymphocytes.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Involvement of SOCS3 in regulation of CD11c+ dendritic cell-derived osteoclastogenesis and severe alveolar bone loss. Infect Immun 2009; 77:2000-9. [PMID: 19255186 DOI: 10.1128/iai.01070-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of suppressor of cytokine signaling (SOCS) molecules in periodontal immunity and RANKL-mediated dendritic cell (DC)-associated osteoclastogenesis, we analyzed SOCS expression profiles in CD4(+) T cells and the effect of SOCS3 expression in CD11c(+) DCs during periodontal inflammation-induced osteoclastogenesis and bone loss in nonobese diabetic (NOD) versus humanized NOD/SCID mice. Our results of ex vivo and in vitro analyses showed that (i) there is significantly higher SOCS3 expression associated with RANKL(+) T-cell-mediated bone loss in correlation with increased CD11c(+) DC-mediated osteoclastogenesis; (ii) the transfection of CD11c(+) DC using an adenoviral vector carrying a dominant negative SOCS3 gene significantly abrogates TRAP and bone-resorptive activity; and (iii) inflammation-induced TRAP expression, bone resorption, and SOCS3 activity are not associated with any detectable change in the expression levels of TRAF6 and mitogen-activated protein kinase signaling adaptors (i.e., Erk, Jnk, p38, and Akt) in RANKL(+) T cells. We conclude that SOCS3 plays a critical role in modulating cytokine signaling involved in RANKL-mediated DC-derived osteoclastogenesis during immune interactions with T cells and diabetes-associated severe inflammation-induced alveolar bone loss. Therefore, the development of SOCS3 inhibitors may have therapeutic potential as the target to halt inflammation-induced bone loss under pathological conditions in vivo.
Collapse
|
21
|
Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA. Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One 2009; 4:e4226. [PMID: 19156219 PMCID: PMC2627485 DOI: 10.1371/journal.pone.0004226] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/10/2008] [Indexed: 02/06/2023] Open
Abstract
Background The deficit of pancreatic islet β cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D. Methodology/Principal Findings Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4+CD62L+ Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet β-cell regeneration to increase β-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4+CD62L+ Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets. Conclusions/Significance These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes, providing a novel strategy for the treatment of type 1 diabetes as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|