1
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
3
|
Wang Y, Li JJ, Ba HJ, Wang KF, Wen XZ, Li DD, Zhu XF, Zhang XS. Down Regulation of c-FLIP L Enhance PD-1 Blockade Efficacy in B16 Melanoma. Front Oncol 2019; 9:857. [PMID: 31552181 PMCID: PMC6738195 DOI: 10.3389/fonc.2019.00857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint blockade of programmed cell death protein 1 (PD-1) had an impressive long-lasting effect in a portion of advanced-stage melanoma patients, however, this therapy failed to induce responses in several patients; how to increase the objective response rate is very important. Cellular FLICE-inhibitory protein (c-FLIP) could inhibit apoptosis directly at the death-inducing signaling complex of death receptors and is also considered to be the main cause of immune escape. The overexpression of c-FLIPL occurs frequently in melanoma and its expression is associated with the prognosis. We found that the level of c-FLIPL expression was associated with the PD-1 blockade response rate in melanoma patients. Thus, we performed this research to investigate how c-FLIPL regulates immunotherapy in melanoma. We demonstrate that down regulation of c-FLIPL enhances the PD-1 blockade efficacy in B16 melanoma tumor model. Down regulation of c-FLIPL could increase the tumor apoptosis and enhance the antitumor response of T cells in the lymphocyte tumor cells co-culture system. Moreover, knockdown of c-FLIPL could decrease the expression of PD-L1 and recruit more effector T cells in the tumor microenvironment. Our results may provide a new combined therapeutic target for further improving the efficacy of PD-1 blockade in melanoma.
Collapse
Affiliation(s)
- Yao Wang
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China.,Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jing-Jing Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong-Jun Ba
- Pediatric Cardiology Department, Heart Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke-Feng Wang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi-Zhi Wen
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Dan Li
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- Biotherapy Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Hu J, Luo T, Xi D, Guo K, Hu L, Zhao J, Chen S, Guo Z. Silencing ZAP70 prevents HSP65-induced reverse cholesterol transport and NF-κB activation in T cells. Biomed Pharmacother 2018; 102:271-277. [DOI: 10.1016/j.biopha.2018.03.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
|
5
|
Lee SH, Kwon JY, Kim SY, Jung K, Cho ML. Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep 2017; 7:10133. [PMID: 28860618 PMCID: PMC5579272 DOI: 10.1038/s41598-017-09767-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon γ (IFN-γ) induces an inflammatory response and apoptotic cell death. Rheumatoid arthritis (RA) is a systemic inflammatory disease associated with increased levels of inflammatory mediators, including tumour necrosis factor α (TNF-α) and T helper (Th) 17 cells, and downregulation of apoptosis of inflammatory cells. We hypothesized that IFN-γ would reduce inflammatory cell death in vitro and that loss of IFN-γ would aggravate inflammation in vivo. IFN-γ downregulated necroptosis and the expression of cellular FLICE-like inhibitory protein (cFLIPL) and mixed lineage kinase domain-like (MLKL). However, loss of IFN-γ promoted the production of cFLIPL and MLKL, and necroptosis. IFN-γ deficiency increased Th17 cell number and upregulated the expression of IL-17 and TNF-α. Expression of MLKL, receptor interacting protein kinase (RIPK)1, and RIPK3 was increased in the joints of mice with collagen-induced arthritis (CIA). Compared with wild-type mice with CIA, IFN-γ−/− CIA mice showed exacerbation of cartilage damage and joint inflammation, and acceleration of MLKL, RIPK1, and RIPK3 production in the joints. IFN-γ deficiency induced the activation of signal transducer and activator of transcription 3. These results suggest that IFN-γ regulates inflammatory cell death and may have potential for use in the treatment of RA.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
6
|
Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP. Int J Mol Sci 2015; 16:30321-41. [PMID: 26694384 PMCID: PMC4691174 DOI: 10.3390/ijms161226232] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Osamu Nakabayashi
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| |
Collapse
|
7
|
Jia X, Wang D, Gao N, Cao H, Zhang H. Atrazine Triggers the Extrinsic Apoptosis Pathway in Lymphocytes of the Frog Pelophylax nigromaculata in Vivo. Chem Res Toxicol 2015; 28:2010-8. [DOI: 10.1021/acs.chemrestox.5b00238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiuying Jia
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
- Key
Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China, 310036
| | - Dandan Wang
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Nana Gao
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Hui Cao
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Hangjun Zhang
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
- Key
Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China, 310036
| |
Collapse
|
8
|
Wu YJ, Wu YH, Mo ST, Hsiao HW, He YW, Lai MZ. Cellular FLIP Inhibits Myeloid Cell Activation by Suppressing Selective Innate Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:2612-23. [PMID: 26238491 DOI: 10.4049/jimmunol.1402944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Cellular FLIP (c-FLIP) specifically inhibits caspase-8 and suppresses death receptor-induced apoptosis. c-FLIP has also been reported to transmit activation signals. In this study, we report a novel function of c-FLIP involving inhibition of myeloid cell activation through antagonizing the selective innate signaling pathway. We found that conditional knockout of c-FLIP in dendritic cells (DCs) led to neutrophilia and splenomegaly. Peripheral DC populations, including CD11b(+) conventional DCs (cDCs), CD8(+) cDCs, and plasmacytoid DCs, were not affected by c-FLIP deficiency. We also found that c-FLIP knockout cDCs, plasmacytoid DCs, and bone marrow-derived DCs (BMDCs) displayed enhanced production of TNF-α, IL-2, or G-CSF in response to stimulation of TLR4, TLR2, and dectin-1. Consistent with the ability of c-FLIP to inhibit the activation of p38 MAPK, the enhanced activation of c-FLIP-deficient BMDCs could be partly linked to an elevated activation of p38 MAPK after engagement of innate receptors. Increased activation was also found in c-FLIP(+/-) macrophages. Additionally, the increased activation in c-FLIP-deficient DCs was independent of caspase-8. Our results reveal a novel inhibitory role of c-FLIP in myeloid cell activation and demonstrate the unexpected anti-inflammatory activity of c-FLIP. Additionally, our observations suggest that cancer therapy targeting c-FLIP downregulation may facilitate DC activation and increase T cell immunity.
Collapse
Affiliation(s)
- Yu-Jung Wu
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Yung-Hsuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Huey-Wen Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ming-Zong Lai
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| |
Collapse
|
9
|
He MX, He YW. c-FLIP protects T lymphocytes from apoptosis in the intrinsic pathway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3444-51. [PMID: 25725104 DOI: 10.4049/jimmunol.1400469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apoptosis can be induced by either death receptors on the plasma membrane (extrinsic pathway) or the damage of the genome and/or cellular organelles (intrinsic pathway). Previous studies suggest that cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) promotes cell survival in death receptor-induced apoptosis pathway in T lymphocytes. Independent of death receptor signaling, mitochondria sense apoptotic stimuli and mediate the activation of effector caspases. Whether c-FLIP regulates mitochondrion-dependent apoptotic signals remains unknown. In this study, c-FLIP gene was deleted in mature T lymphocytes in vitro, and the role of c-FLIP protein in intrinsic apoptosis pathway was studied. In resting T cells treated with the intrinsic apoptosis inducer, c-FLIP suppressed cytochrome c release from mitochondria. Bim-deletion rescued the enhanced apoptosis in c-FLIP-deficient T cells, whereas inhibition of caspase 8 did not. Different from activated T cells, there was no necroptosis or increase in reactive oxygen species in c-FLIP-deficient resting T cells. These data suggest that c-FLIP is a negative regulator of intrinsic apoptosis pathway in T lymphocytes.
Collapse
Affiliation(s)
- Ming-Xiao He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Gordy C, Liang J, Pua H, He YW. c-FLIP protects eosinophils from TNF-α-mediated cell death in vivo. PLoS One 2014; 9:e107724. [PMID: 25333625 PMCID: PMC4204828 DOI: 10.1371/journal.pone.0107724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/15/2014] [Indexed: 01/21/2023] Open
Abstract
Understanding the signals that regulate eosinophil survival and death is critical to developing new treatments for asthma, atopy, and gastrointestinal disease. Previous studies suggest that TNF-α stimulation protects eosinophils from apoptosis, and this TNF-α-mediated protection is mediated by the upregulation of an unknown protein by NF-κB. Here, we show for the first time that eosinophils express the caspase 8-inhibitory protein c-FLIP, and c-FLIP expression is upregulated upon TNF-α stimulation. Considering that c-FLIP expression is regulated by NF-κB, we hypothesized that c-FLIP might serve as the “molecular switch” that converts TNFRI activation to a pro-survival signal in eosinophils. Indeed, we found that one c-FLIP isoform, c-FLIPL, is required for mouse eosinophil survival in the presence of TNF-α both in vitro and in vivo. Importantly, our results suggest c-FLIP as a potential therapeutic target for the treatment of eosinophil-mediated disease.
Collapse
Affiliation(s)
- Claire Gordy
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Jie Liang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heather Pua
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
11
|
Salvesen GS, Walsh CM. Functions of caspase 8: the identified and the mysterious. Semin Immunol 2014; 26:246-52. [PMID: 24856110 DOI: 10.1016/j.smim.2014.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023]
Abstract
Initially discovered as an initiator protease in apoptosis mediated by death receptors, caspase-8 is now known to have an apparently confounding opposing effect in securing cell survival. It is required to allow mouse embryo survival, and the survival of hematopoietic cells during their development and activation. Classic models in which caspase-8 is depleted or inhibited frequently result in inhibition of apoptosis, and conversion to death through a necrotic pathway. This bewildering switch is now known to be driven by activation of a pathway dependent on protein kinases of the RIP family, which engage a pathway known as necroptosis. If caspase-8 does not control this pathway, necrotic death results. The pro-apoptotic and pro-survival functions of caspase-8 are regulated by a specific interaction with the pseudo-caspase cFLIP, and it is thought that the heterocomplex between these two partners alters the substrate specificity of caspase-8 in favor of inactivating components of the RIP kinase pathway. The description of how caspase-8 and cFLIP coordinate the switch between apoptosis and survival is just beginning. The mechanism is not known, the differential targets are not known, and the reason of why an apoptotic initiator has been co-opted as a critical survival factor is only guessed at. Elucidating these unknowns will be important in understanding mechanisms and possible therapeutic targets in autoimmune, inflammatory, and metastatic diseases.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Abstract
Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP(L)), short (c-FLIP(S)), and c-FLIP(R) splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP(L) and c-FLIP(S) are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP(L) in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP(L) and c-FLIP(S) splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.
Collapse
|
13
|
Piao X, Komazawa-Sakon S, Nishina T, Koike M, Piao JH, Ehlken H, Kurihara H, Hara M, Van Rooijen N, Schütz G, Ohmuraya M, Uchiyama Y, Yagita H, Okumura K, He YW, Nakano H. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci Signal 2012; 5:ra93. [PMID: 23250397 DOI: 10.1126/scisignal.2003558] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a catalytically inactive homolog of caspase-8, a proapoptotic initiator caspase, c-FLIP blocks apoptosis by binding to and inhibiting caspase-8. The transcription factor nuclear factor κB (NF-κB) plays a pivotal role in maintaining the homeostasis of the intestine and the liver by preventing death receptor-induced apoptosis, and c-FLIP plays a role in the NF-κB-dependent protection of cells from death receptor signaling. Because c-Flip-deficient mice die in utero, we generated conditional c-Flip-deficient mice to investigate the contribution of c-FLIP to homeostasis of the intestine and the liver at developmental and postnatal stages. Intestinal epithelial cell (IEC)- or hepatocyte-specific deletion of c-Flip resulted in perinatal lethality as a result of the enhanced apoptosis and programmed necrosis of the IECs and the hepatocytes. Deficiency in the gene encoding tumor necrosis factor-α (TNF-α) receptor 1 (Tnfr1) partially rescued perinatal lethality and the development of colitis in IEC-specific c-Flip-deficient mice but did not rescue perinatal lethality in hepatocyte-specific c-Flip-deficient mice. Moreover, adult mice with interferon (IFN)-inducible deficiency in c-Flip died from hepatitis soon after depletion of c-FLIP. Pretreatment of IFN-inducible c-Flip-deficient mice with a mixture of neutralizing antibodies against TNF-α, Fas ligand (FasL), and TNF-related apoptosis-inducing ligand (TRAIL) prevented hepatitis. Together, these results suggest that c-FLIP controls the homeostasis of IECs and hepatocytes by preventing cell death induced by TNF-α, FasL, and TRAIL.
Collapse
Affiliation(s)
- Xuehua Piao
- Department of Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ 2012; 20:188-97. [PMID: 23175183 DOI: 10.1038/cdd.2012.148] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caspase 8 plays a dual role in the survival of T lymphocytes. Although active caspase 8 mediates apoptosis upon death receptor signaling, the loss of caspase 8 activity leads to receptor-interacting protein (RIP)-1/RIP-3-dependent necrotic cell death (necroptosis) upon TCR activation. The anti-apoptotic protein c-FLIP (cellular caspase 8 (FLICE)-like inhibitory protein) suppresses death receptor-induced caspase 8 activation. Moreover, recent findings suggest that c-FLIP is also involved in inhibiting necroptosis and autophagy. It remains unclear whether c-FLIP protects primary T lymphocytes from necroptosis or regulates the threshold at which autophagy occurs. Here, we used a c-FLIP isoform-specific conditional deletion model to show that c-FLIP(L)-deficient T cells underwent RIP-1-dependent necroptosis upon TCR stimulation. Interestingly, although previous studies have only described necroptosis in the absence of caspase 8 activity, we found that pro-apoptotic caspase 8 activity and apoptosis were also enhanced in c-FLIP(L)-deficient T lymphocytes. Furthermore, c-FLIP(L)-deficient T cells exhibited enhanced autophagy, which served a cytoprotective function. Together, these findings indicate that c-FLIP(L) plays an important antinecroptotic role and is a key regulator of apoptosis, autophagy, and necroptosis in T lymphocytes.
Collapse
|
15
|
Golan-Gerstl R, Wallach-Dayan SB, Zisman P, Cardoso WV, Goldstein RH, Breuer R. Cellular FLICE-like inhibitory protein deviates myofibroblast fas-induced apoptosis toward proliferation during lung fibrosis. Am J Respir Cell Mol Biol 2012; 47:271-9. [PMID: 22582174 DOI: 10.1165/rcmb.2010-0284rc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A prominent feature of fibrotic tissue in general and of lungs in particular is fibroblast proliferation and accumulation. In patients overcoming fibrosis, apoptosis limits this excessive cell growth. We have previously shown resistance to Fas-induced apoptosis of primary lung fibroblasts from mice with bleomycin-induced lung fibrosis, their escape from immune surveillance, and continued accumulation in spite of overexpression of the Fas death receptor. Cellular FLICE-like inhibitory protein (c-FLIP) is a regulator of cell death receptor-induced apoptosis in many cell types. We aimed to determine c-FLIP levels in myofibroblasts from fibrotic lungs and to directly assess c-FLIP's role in apoptosis and proliferation of primary lung myofibroblasts. c-FLIP levels were determined by apoptosis gene array, flow cytometry, Western blot, and immunofluorescence before and after down-regulation with a specific small interfering RNA. Apoptosis was assessed by caspase cleavage in Western blot and by Annexin V affinity labeling after FACS and tissue immunofluorescence. Proliferation was assessed by BrdU uptake, also using FACS and immunofluorescence. We show that myofibroblasts from lungs of humans with idiopathic pulmonary fibrosis and from bleomycin-treated versus normal saline-treated mice up-regulate c-FLIP levels. Using the animal model, we show that fibrotic lung myofibroblasts divert Fas signaling from apoptosis to proliferation and that this requires signaling by TNF receptor-associated factor (TRAF) and NF-κB. c-FLIP down-regulation reverses the effect of Fas activation, causing increased apoptosis, decreased proliferation, and diminished recruitment of TRAF to the DISC complex. This indicates that c-FLIP is essential for myofibroblast accumulation and may serve as a potential target to manipulate tissue fibrosis.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Lung Cellular and Molecular Laboratory, Institute of Pulmonary Medicine, Hadassah University Hospital, POB 12000, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
16
|
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice. PLoS One 2012; 7:e29808. [PMID: 22238658 PMCID: PMC3251613 DOI: 10.1371/journal.pone.0029808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. Methodology/Principal Findings When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. Conclusions/Significance We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Collapse
|
17
|
Abstract
During the development and normal function of T lymphocytes, the cells are subject to several checkpoints at which they must "decide" to live or die. At these critical times and during homeostasis, the molecules that regulate the classical apoptotic pathways and survival pathways such as autophagy have critical roles in controlling this decision. Our laboratory has focused on the roles of apoptotic and autophagic proteins in T lymphocyte development and function. Using genetic models in mice and in vitro analyses of T cell functions, we have outlined critical roles for the Bcl-2 family (regulators of the intrinsic pathway of apoptosis), c-FLIP (an anti-apoptotic protein in the extrinsic pathway of apoptosis), and autophagy in T lymphocytes.
Collapse
|
18
|
Pro- and anti-apoptotic CD95 signaling in T cells. Cell Commun Signal 2011; 9:7. [PMID: 21477291 PMCID: PMC3090738 DOI: 10.1186/1478-811x-9-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.
Collapse
|
19
|
El-Gazzar A, Wittinger M, Perco P, Anees M, Horvat R, Mikulits W, Grunt TW, Mayer B, Krainer M. The role of c-FLIP(L) in ovarian cancer: chaperoning tumor cells from immunosurveillance and increasing their invasive potential. Gynecol Oncol 2010; 117:451-9. [PMID: 20227749 DOI: 10.1016/j.ygyno.2010.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 12/25/2022]
Abstract
OBJECTIVE In the current study, we aimed to investigate the role of the long isoform of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme (FLICE)-like inhibitory protein (c-FLIP(L)) in ovarian cancer (OC) development by using RNA interference (RNAi) in vitro and in vivo. METHODS TRAIL-resistant human OC cell lines were genetically manipulated by RNAi-mediated suppression of c-FLIP(L). Subsequently, the genetic alteration that was introduced into the various OC cell lines was characterized in vitro and in vivo. RESULTS We previously showed that about 40% of OC patients express high levels of c-FLIP(L), and that natural killer (NK) cells mediated immunosurveillance in OC. In the present study, we observed that the knockdown of c-FLIP(L) in human OC cell lines not only enhanced their sensitivity to TRAIL-mediated apoptosis, but also inhibited their migratory phenotype in a TRAIL-dependent manner in vitro. Shutdown of c-FLIP(L) in OC cells significantly decreased tumor development by induction of apoptosis and reduction of proliferation in vivo. Importantly, the knockdown of c-FLIP(L) particularly inhibited the invasion of OC cells into the peritoneal cavity, which might be due to high expression of TRAIL by NK cells and NK-cell mediated immunosurveillance. CONCLUSION These data demonstrate that c-FLIP(L) exhibits multiple functions in OC cells: first by concomitantly evading the natural immunity mediated by TRAIL-induced cell death, and second by augmenting cell motility and invasion in vivo. Our findings indicate that c-FLIP(L) regulates sensitivity of OC to TRAIL-mediated apoptosis and offers possible therapeutical implications for OC in the future.
Collapse
Affiliation(s)
- Ahmed El-Gazzar
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
TNFRI is a positive T-cell costimulatory molecule important for the timing of cytokine responses. Immunol Cell Biol 2010; 88:586-95. [PMID: 20212506 DOI: 10.1038/icb.2010.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor necrosis factor (TNF)- and TNF receptor I (TNFRI)-deficient mice are resistant to initiation and show delayed resolution of disease in paradigms of autoimmune disease, but the contribution of TNF/TNFRI signaling to T-cell activation and effector responses has not been determined. In this study, we investigated the role of TNFRI in T-cell receptor (TCR)-mediated T-cell activation in vitro and in vivo using CD3(+)-enriched primary T cells and mice deficient in TNFRI. Following TCR engagement, TNFRI knockout (KO) T cells showed significantly delayed proliferation, cell division, upregulation of interleukin 2 (IL-2) and IL-2 receptor alpha chain (CD25) mRNA and cell-surface expression of CD25 compared with wild-type (WT) cells. Thus, WT and TNFRI KO cells showed equivalent proliferation peaks at 48 and 72 h, respectively. TNFRI KO mice also developed a defective primary T-cell response to ovalbumin and an acute contact hypersensitivity response to oxazolone (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one). However, TNFRI KO splenocytes that were stimulated by TCR engagement in vitro for 96 h produced significantly higher intracellular levels of interferon-gamma (IFN-gamma), IL-2 and TNF-alpha, but not IL-17, compared with WT cells, in correlation with their relatively higher proliferation rate at this time point. Further, TCR-stimulated CD3(+)-enriched TNFRI KO T cells showed similarly higher production and secretion of IFN-gamma and IL-2 compared with WT, suggesting that TNFRI-mediated cytokine regulation might involve a T-cell autonomous effect. Our results show a novel role for TNFRI as a positive T-cell costimulatory molecule that is important for timely T-cell activation and effector cytokine production and the development of primary immune responses in mice.
Collapse
|
21
|
Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10:348-55. [DOI: 10.1038/ni.1714] [Citation(s) in RCA: 506] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Zhang J, Chen Y, Huang Q, Cheng W, Kang Y, Shu L, Yin W, Hua ZC. Nuclear localization of c-FLIP-L and its regulation of AP-1 activity. Int J Biochem Cell Biol 2009; 41:1678-84. [PMID: 19433309 DOI: 10.1016/j.biocel.2009.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/15/2009] [Accepted: 02/10/2009] [Indexed: 12/29/2022]
Abstract
Cellular FLICE-like inhibitory protein (c-FLIP-L), similar in structure to caspase-8, is capable of blocking Fas- or other death receptors (DR)-mediated apoptosis through association with FADD in the DISC. Recent studies have implicated the function of c-FLIP-L in T-cell proliferation, but the exact mechanism underlying this process remains to be elucidated. In this report, we showed for the first time that c-FLIP-L was present in both the cytoplasm and nucleus of cells, but was more abundantly distributed in the nucleus. The putative NLS signal locates within the p12 region of caspase-like domain. Furthermore, c-FLIP's export to cytoplasm membrane was dependent on apoptotic stimulation, while it rapidly translocated to the nucleus in response to proliferative stimuli. To gain insights into the possible function of c-FLIP-L in the nucleus, we found c-FLIP-L could activate the AP-1 transcriptional activity independent of MAPK activation. In sum, our findings describe a novel function of c-FLIP-L involved in AP-1 activation and cell proliferation.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Center of Hepatobiliary Diseases and the State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Gulou Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Antisense targeting of cFLIP sensitizes activated T cells to undergo apoptosis and desensitizes responses to contact dermatitis. J Invest Dermatol 2009; 129:1945-53. [PMID: 19225545 DOI: 10.1038/jid.2009.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contact dermatitis is the result of inflammatory responses mediated by hapten-specific activated CD8+ and CD4+ T cells. Activation-induced cell death (AICD) is a naturally occurring process regulating the resolution of T-cell responses through decreased expression of the antiapoptotic molecule cellular FLICE inhibitory protein (cFLIP). We show that targeting cFLIP expression in vitro and in vivo, with morpholino antisense applied systemically or topically in conjunction with antigen, sensitizes T cells to undergo "early" AICD resulting in tolerance. Analysis of antisense-treated CD8+ OT-1 splenocytes after co-culture with SIINFEKL-pulsed DCs showed apoptosis occurring in a dose-dependent manner with respect to cFLIP peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) concentration. A transplant acceptance model using male DO.11 donor cells and female BALB/c recipient mice showed that cFLIP antisense treatment could promote antigen tolerance. Hypersensitivity responses induced in mice by the epicutaneous application of the haptens FITC and oxazolone confirmed that topically applied cFLIP antisense could reduce inflammation. Treatment of the skin produced significant reduction in dermatitis and localized infiltration of lymphocytes. Moreover, the treatment was target- and antigen-specific, dose-dependent, and capable of inducing long-lived tolerance. These data suggest that the targeted expression of immune-regulating molecules is possible through the application of antisense to the skin.
Collapse
|
24
|
Zhang N, Hopkins K, He YW. c-FLIP protects mature T lymphocytes from TCR-mediated killing. THE JOURNAL OF IMMUNOLOGY 2008; 181:5368-73. [PMID: 18832693 DOI: 10.4049/jimmunol.181.8.5368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although c-FLIP has been identified as an important player in the extrinsic (death receptor-induced) apoptosis pathway, its endogenous function in mature T lymphocytes remains undefined. c-FLIP may inhibit or promote T cell death as previous data demonstrate that the c-FLIP(L) isoform can promote or inhibit caspase 8 activation while the c-FLIP(S) isoform promotes or inhibits T cell death when overexpressed. Although the c-FLIP(R) isoform inhibits cell death in cell lines, its function in T cells remains unknown. To investigate the function of c-FLIP in mature T cells, we have generated several genetic mouse models with c-FLIP or its individual isoforms deleted in mature T cells. Surprisingly, we found that c-FLIP protects mature T cells not only from apoptosis induced by the death receptors Fas and TNFR but also from TCR-mediated and spontaneous apoptosis. Thus, c-FLIP plays an essential role in protecting mature T cells from a death signal induced through the TCR itself and is required for naive T cell survival. Our results demonstrate that c-FLIP functions beyond the extrinsic death pathway.
Collapse
Affiliation(s)
- Nu Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|