1
|
Ferreira-Gomes M, Chen Y, Durek P, Rincon-Arevalo H, Heinrich F, Bauer L, Szelinski F, Guerra GM, Stefanski AL, Niedobitek A, Wiedemann A, Bondareva M, Ritter J, Lehmann K, Hardt S, Hipfl C, Hein S, Hildt E, Matz M, Mei HE, Cheng Q, Dang VD, Witkowski M, Lino AC, Kruglov A, Melchers F, Perka C, Schrezenmeier EV, Hutloff A, Radbruch A, Dörner T, Mashreghi MF. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun 2024; 15:4182. [PMID: 38755157 PMCID: PMC11099182 DOI: 10.1038/s41467-024-48570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Yidan Chen
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Laura Bauer
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Bondareva
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Hein
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Witkowski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva V Schrezenmeier
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany.
| |
Collapse
|
2
|
Care MA, Stephenson S, Owen R, Doody GM, Tooze RM. Spontaneous EBV-Reactivation during B Cell Differentiation as a Model for Polymorphic EBV-Driven Lymphoproliferation. Cancers (Basel) 2023; 15:3083. [PMID: 37370694 PMCID: PMC10296496 DOI: 10.3390/cancers15123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD. Here, we developed an in vitro model of plasma cell (PC) differentiation from peripheral blood memory B cells. To assess the frequency and phenotypes of EBV-associated populations derived during differentiation, we analysed eight differentiations during the PC stage with a targeted single-cell gene expression panel. We identified subpopulations of EBV-gene expressing cells with PC and/or B cell expression features in differentiations from all tested donors. EBV-associated cells varied in frequency, ranging from 3-28% of cells. Most EBV-associated cells expressed PC genes such as XBP1 or MZB1, and in all samples these included a quiescent PC fraction that lacked cell a cycle gene expression. With increasing EBV-associated cells, populations with B cell features became prominent, co-expressing a germinal centre (GC) and activating B cell gene patterns. The presence of highly proliferative EBV-associated cells was linked to retained MS4A1/CD20 expression and IGHM and IGHD co-expression, while IGHM class-switched cells were enriched in quiescent PC fractions. Thus, patterns of gene expression in primary EBV reactivation were shown to include features related to GC B cells, which was also observed in EBV-transformed lymphoblastoid cell lines. This suggests a particular association between spontaneously developing EBV-expansions and IgM+ IgD+ non-switched B cells.
Collapse
Affiliation(s)
- Matthew A. Care
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Stephenson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Roger Owen
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| | - Gina M. Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
| | - Reuben M. Tooze
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK; (M.A.C.); (S.S.)
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| |
Collapse
|
3
|
Stephenson S, Doody GM. Metabolic Reprogramming During B-Cell Differentiation. Methods Mol Biol 2023; 2675:271-283. [PMID: 37258770 DOI: 10.1007/978-1-0716-3247-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
B cells engaging with antigen and secondary signals provided by T cell help, or ligands for Toll-like receptors, undergo a step-wise process of differentiation to eventually produce antibody-secreting plasma cells. During the course of this conversion, the cells transition from a resting, non-growing state to an activated B-cell state engaged in DNA synthesis and mitosis to a terminally differentiated, quiescent cell state with expanded organelles necessary for high levels of secretion. Each of these phases is accompanied by considerable changes in metabolic requirements. To facilitate evaluation of this metabolic reprogramming, methods for the in vitro differentiation of human B cells that incorporates each of the transitional stages are described.
Collapse
Affiliation(s)
- Sophie Stephenson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Stephenson S, Care MA, Doody GM, Tooze RM. APRIL Drives a Coordinated but Diverse Response as a Foundation for Plasma Cell Longevity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:926-937. [PMID: 36130130 PMCID: PMC7613700 DOI: 10.4049/jimmunol.2100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
Ab-secreting cells survive in niche microenvironments, but cellular responses driven by particular niche signals are incompletely defined. The TNF superfamily member a proliferation-inducing ligand (APRIL) can support the maturation of transitory plasmablasts into long-lived plasma cells. In this study, we explore the biological programs established by APRIL in human plasmablasts. Under conditions allowing the maturation of ex vivo- or in vitro-generated plasmablasts, we find that APRIL drives activation of ERK, p38, and JNK, accompanied by a classical NF-κB response and activation of the AKT/FOXO1 pathway. Time-course gene expression data resolve coordinated transcriptional responses propagated via immediate early genes and NF-κB targets and converging onto modules of genes enriched for MYC targets and metabolism/cell growth-related pathways. This response is shared between APRIL and an alternate TNF superfamily member CD40L but is not a feature of alternative niche signals delivered by IFN-α or SDF1. However, APRIL and CD40L responses also diverge. CD40L drives expression of genes related to the activated B cell state whereas APRIL does not. Thus, APRIL establishes a broad foundation for plasma cell longevity with features of cellular refueling while being uncoupled from support of the B cell state.
Collapse
Affiliation(s)
- Sophie Stephenson
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Matthew A Care
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Reuben M Tooze
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| |
Collapse
|
5
|
Xie X, Shrimpton J, Doody GM, Conaghan PG, Ponchel F. B-cell capacity for differentiation changes with age. Aging Cell 2021; 20:e13341. [PMID: 33711204 PMCID: PMC8045946 DOI: 10.1111/acel.13341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background Age‐related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin. Aims To compare the intrinsic B‐cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T‐cell help or activation via TLR engagement. Methods B cells were isolated from healthy individuals, in younger (30–38 years) and older (60–64 years) donors. An in vitro model system of B‐cell differentiation was used, analysing 5 differentiation markers by flow cytometry, under T‐dependent (TD: CD40/BCR stimulation) or T‐independent (TI: TLR7/BCR activation) conditions. Antibody secretion was measured by ELISA and gene expression using qPCR. Results TI and TD differentiation resulted in effective proliferation of B cells followed by their differentiation into PC. B‐cell‐executed TI differentiation was faster, all differentiation marker and genes being expressed earlier than under TD differentiation (day 6), although generating less viable cells and lower antibody levels (day 13). Age‐related differences in B‐cell capacity for differentiation were minimal in TD differentiation. In contrast, in TI differentiation age significantly affected proliferation, viability, differentiation, antibody secretion and gene expression, older donors being more efficient. Conclusion Altogether, B‐cell differentiation into PC appeared similar between age groups when provided with T‐cell help, in contrast to TI differentiation, where multiple age‐related changes suggest better capacities in older donors. These new findings may help explain the emergence of autoantibodies in ageing.
Collapse
Affiliation(s)
- Xuanxiao Xie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Jennifer Shrimpton
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Gina M. Doody
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Philip G. Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| |
Collapse
|
6
|
Ferreira-Gomes M, Kruglov A, Durek P, Heinrich F, Tizian C, Heinz GA, Pascual-Reguant A, Du W, Mothes R, Fan C, Frischbutter S, Habenicht K, Budzinski L, Ninnemann J, Jani PK, Guerra GM, Lehmann K, Matz M, Ostendorf L, Heiberger L, Chang HD, Bauherr S, Maurer M, Schönrich G, Raftery M, Kallinich T, Mall MA, Angermair S, Treskatsch S, Dörner T, Corman VM, Diefenbach A, Volk HD, Elezkurtaj S, Winkler TH, Dong J, Hauser AE, Radbruch H, Witkowski M, Melchers F, Radbruch A, Mashreghi MF. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun 2021; 12:1961. [PMID: 33785765 PMCID: PMC8010106 DOI: 10.1038/s41467-021-22210-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Caroline Tizian
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anna Pascual-Reguant
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Weijie Du
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ronja Mothes
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chaofan Fan
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Lisa Budzinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Justus Ninnemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mareen Matz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lennard Ostendorf
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lukas Heiberger
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Sandy Bauherr
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marcus Alexander Mall
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas H Winkler
- Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jun Dong
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anja Erika Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mario Witkowski
- Laboratory of Innate Immunity, Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Cocco M, Care MA, Saadi A, Al-Maskari M, Doody G, Tooze R. A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition. Life Sci Alliance 2020; 3:e202000654. [PMID: 32843533 PMCID: PMC7471511 DOI: 10.26508/lsa.202000654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023] Open
Abstract
The activated B-cell (ABC) to plasmablast transition encompasses the cusp of antibody-secreting cell (ASC) differentiation. We explore this transition with integrated analysis in human cells, focusing on changes that follow removal from CD40-mediated signals. Within hours of input signal loss, cell growth programs shift toward enhanced proliferation, accompanied by ER-stress response, and up-regulation of ASC features. Clustering of genomic occupancy for IRF4, BLIMP1, XBP1, and CTCF with histone marks identifies a dichotomy: XBP1 and IRF4 link to induced but not repressed gene modules in plasmablasts, whereas BLIMP1 links to modules of ABC genes that are repressed, but not to activated genes. Between ABC and plasmablast states, IRF4 shifts away from AP1/IRF composite elements while maintaining occupancy at IRF and ETS/IRF elements. This parallels the loss of BATF expression, which is identified as a potential BLIMP1 target. In plasmablasts, IRF4 acquires an association with CTCF, a feature maintained in plasma cell myeloma lines. Thus, shifting occupancy links IRF4 to both ABC and ASC gene expression, whereas BLIMP1 occupancy links to repression of the activation state.
Collapse
Affiliation(s)
- Mario Cocco
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Matthew A Care
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Amel Saadi
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Muna Al-Maskari
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gina Doody
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reuben Tooze
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Care MA, Westhead DR, Tooze RM. Parsimonious Gene Correlation Network Analysis (PGCNA): a tool to define modular gene co-expression for refined molecular stratification in cancer. NPJ Syst Biol Appl 2019; 5:13. [PMID: 30993001 PMCID: PMC6459838 DOI: 10.1038/s41540-019-0090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Cancers converge onto shared patterns that arise from constraints placed by the biology of the originating cell lineage and microenvironment on programs driven by oncogenic events. Here we define consistent expression modules reflecting this structure in colon and breast cancer by exploiting expression data resources and a new computationally efficient approach that we validate against other comparable methods. This approach, Parsimonious Gene Correlation Network Analysis (PGCNA), allows comparison of network structures between these cancer types identifying shared modules of gene co-expression reflecting: cancer hallmarks, functional and structural gene batteries, copy number variation and biology of originating lineage. These networks along with the mapping of outcome data at gene and module level provide an interactive resource that generates context for relationships between genes within and between such modules. Assigning module expression values (MEVs) provides a tool to summarize network level gene expression in individual cases illustrating potential utility in classification and allowing analysis of linkage between module expression and mutational state. Exploiting TCGA data thus defines both recurrent patterns of association between module expression and mutation at data-set level, and exemplifies the polarization of mutation patterns with the leading edge of module expression at individual case level. We illustrate the scalable nature of the approach within immune response related modules, which in the context of breast cancer demonstrates the selective association of immune subsets, in particular mast cells, with the underlying mutational pattern. Together our analyses provide evidence for a generalizable framework to enhance molecular stratification in cancer.
Collapse
Affiliation(s)
- Matthew A. Care
- Section of Experimental Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, LS9 7TF UK
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - David R. Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - Reuben M. Tooze
- Section of Experimental Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, LS9 7TF UK
| |
Collapse
|