1
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Dale GA, Wilkins DJ, Rowley J, Scharer CD, Tipton CM, Hom J, Boss JM, Corces V, Sanz I, Jacob J. Somatic Diversification of Rearranged Antibody Gene Segments by Intra- and Interchromosomal Templated Mutagenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2141-2153. [PMID: 35418472 PMCID: PMC9047068 DOI: 10.4049/jimmunol.2100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.
Collapse
Affiliation(s)
- Gordon A Dale
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA
| | - Daniel J Wilkins
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA
| | - Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA
| | | | - Christopher M Tipton
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Jennifer Hom
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Jeremy M Boss
- Emory University School of Medicine, Emory University, Atlanta, GA; and
| | - Victor Corces
- Department of Biology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA;
| |
Collapse
|
3
|
Fukuyama J, Olson BJ, Matsen FA. Lack of Evidence for a Substantial Rate of Templated Mutagenesis in B Cell Diversification. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:936-944. [PMID: 32669310 PMCID: PMC7593666 DOI: 10.4049/jimmunol.2000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
BCR sequences diversify through mutations introduced by purpose-built cellular machinery. A recent paper has concluded that a "templated mutagenesis" process is a major contributor to somatic hypermutation and therefore Ig diversification in mice and humans. In this proposed process, mutations in the Ig locus are introduced by copying short segments from other Ig genes. If true, this would overturn decades of research on B cell diversification and would require a complete rewrite of computational methods to analyze B cell data for these species. In this paper, we re-evaluate the templated mutagenesis hypothesis. By applying the original inferential method using potential donor templates absent from B cell genomes, we obtain estimates of the methods' false positive rates. We find false positive rates of templated mutagenesis in murine and human Ig loci that are similar to or even higher than the original rate inferences, and by considering the bases used in substitution, we find evidence that if templated mutagenesis occurs, it is at a low rate. We also show that the statistically significant results in the original paper can easily result from a slight misspecification of the null model.
Collapse
Affiliation(s)
- Julia Fukuyama
- Department of Statistics, Indiana University Bloomington, Bloomington, IN 47408
| | - Branden J Olson
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
- Department of Statistics, University of Washington, Seattle, WA 98195
| | - Frederick A Matsen
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
- Department of Statistics, University of Washington, Seattle, WA 98195
| |
Collapse
|