1
|
Martinez J, Cook DN. What's the deal with efferocytosis and asthma? Trends Immunol 2021; 42:904-919. [PMID: 34503911 PMCID: PMC9843639 DOI: 10.1016/j.it.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Mucosal sites, such as the lung, serve as crucial, yet vulnerable barriers to environmental insults such as pathogens, allergens, and toxins. Often, these exposures induce massive infiltration and death of short-lived immune cells in the lung, and efficient clearance of these cells is important for preventing hyperinflammation and resolving immunopathology. Herein, we review recent advances in our understanding of efferocytosis, a process whereby phagocytes clear dead cells in a noninflammatory manner. We further discuss how efferocytosis impacts the onset and severity of asthma in humans and mammalian animal models of disease. Finally, we explore how recently identified genetic perturbations or biological pathway modulations affect pathogenesis and shed light on novel therapies aimed at treating or preventing asthma.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Bottemanne P, Paquot A, Ameraoui H, Guillemot-Legris O, Alhouayek M, Muccioli GG. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice. FASEB J 2021; 35:e21514. [PMID: 33734509 DOI: 10.1096/fj.202002555r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a critical component of many lung diseases including asthma and acute lung injury (ALI). Using high-performance liquid chromatography-mass spectrometry, we quantified the levels of oxysterols in two different murine models of lung diseases. These are lipid mediators derived from cholesterol and known to modulate immunity and inflammation. Interestingly, 25-hydroxycholesterol (25-OHC) was the only oxysterol with altered levels during lung inflammation, and its levels were differently affected according to the model. Therefore, we sought to assess how this oxysterol would affect lung inflammatory responses. In a model of lipopolysaccharide (LPS)-induced acute lung inflammation, 25-OHC levels were increased, and most of the hallmarks of the model (eg, leukocyte recruitment, mRNA expression, and secretion of inflammatory cytokines) were decreased following its intratracheal administration. We also found that, when administered in the lung, 25-OHC is metabolized locally into 25-hydroxycholesterol-3-sulfate and 7α,25-dihydroxycholesterol. Their administration in the lungs did not recapitulate all the effects of 25-OHC. Conversely, in a model of allergic asthma induced by intranasal administration of house dust mites (HDM), 25-OHC levels were decreased, and when intranasally administered, this oxysterol worsened the hallmarks of the model (eg, leukocyte recruitment, tissue remodeling [epithelium thickening and peribranchial fibrosis], and cytokine expression) and induced changes in leukotriene levels. Ex vivo, we found that 25-OHC decreases LPS-induced primary alveolar macrophage activation while having no effect on neutrophil activation. Its sulfated metabolite, 25-hydroxycholesterol-3-sulfate, decreased neutrophil, but not macrophage activation. Taken together, our data support a differential role of 25-OHC in ALI and allergic inflammation models.
Collapse
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
3
|
Zhang J, Wu Z, Yu F, Ye L, Gu W, Tan Y, Wang L, Shi Y. Role of liver-X-receptors in airway remodeling in mice with chronic allergic asthma. Exp Ther Med 2021; 22:920. [PMID: 34335881 PMCID: PMC8290420 DOI: 10.3892/etm.2021.10352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Liver X receptors (LXRs) exert anti-inflammatory effects in animal models of certain respiratory diseases. In the present study, a model of chronic airway remodeling was established in wild-type and LXR-deficient mice. Ovalbumin (OVA)-sensitized mice were chronically administered OVA via inhalation for 8 weeks. Prior to each stimulation, certain wild-type mice were treated with GW3965, which is a highly selective LXR agonist. The influence of LXRs on airway inflammation, airway hyperresponsiveness and airway remodeling was evaluated. LXRs were indicated to increase airway inflammation and airway hyperresponsiveness, as well as promote airway remodeling. These results suggest that inhibiting LXRs may be a potential method for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jinmei Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhengcan Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Fenfang Yu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Wang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ying Shi
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
4
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
5
|
Guillemot-Legris O, Muccioli GG. The oxysterome and its receptors as pharmacological targets in inflammatory diseases. Br J Pharmacol 2021; 179:4917-4940. [PMID: 33817775 DOI: 10.1111/bph.15479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols have gained attention over the last decades and are now considered as fully fledged bioactive lipids. The study of their levels in several conditions, including atherosclerosis, obesity and neurodegenerative diseases, led to a better understanding of their involvement in (patho)physiological processes such as inflammation and immunity. For instance, the characterization of the cholesterol-7α,25-dihydroxycholesterol/GPR183 axis and its implication in immunity represents an important step in the oxysterome study. Besides this axis, others were identified as important in several inflammatory pathologies (such as colitis, lung inflammation and atherosclerosis). However, the oxysterome is a complex system notably due to a redundancy of metabolic enzymes and a wide range of receptors. Indeed, deciphering oxysterol roles and identifying the potential receptor(s) involved in a given pathology remain challenging. Oxysterol properties are very diverse, but most of them could be connected by a common component: inflammation. Here, we review the implication of oxysterol receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
7
|
Zhao L, Lei W, Deng C, Wu Z, Sun M, Jin Z, Song Y, Yang Z, Jiang S, Shen M, Yang Y. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol 2020; 236:4807-4828. [PMID: 33305467 DOI: 10.1002/jcp.30204] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Liver X receptor α (LXRα; also known as NR1H3), an isoform of LXRs, is a member of the nuclear receptor family of transcription factors and plays essential roles in the transcriptional control of cholesterol homeostasis. Previous in-depth phenotypic analyses of mouse models with deficient LXRα have also demonstrated various physiological functions of this receptor within inflammatory responses. LXRα activation exerts a combination of metabolic and anti-inflammatory actions resulting in the modulation and the amelioration of inflammatory disorders. The tight "repercussions" between LXRα and inflammation, as well as cholesterol homeostasis, have suggested that LXRα could be pharmacologically targeted in pathologies such as atherosclerosis, acute lung injury, and Alzheimer's disease. This review gives an overview of the recent advances in understanding the roles of LXRα in inflammation and inflammation-associated diseases, which will help in the design of future experimental researches on the potential of LXRα and advance the investigation of LXRα as pharmacological inflammatory targets.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China.,Hainan Branch of National Clinical Reasearch Center of Geriatrics Disease, Sanya, Hainan, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Burg D, Schofield JPR, Brandsma J, Staykova D, Folisi C, Bansal A, Nicholas B, Xian Y, Rowe A, Corfield J, Wilson S, Ward J, Lutter R, Fleming L, Shaw DE, Bakke PS, Caruso M, Dahlen SE, Fowler SJ, Hashimoto S, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Singer F, Sun K, Pandis I, Auffray C, Sousa AR, Adcock IM, Chung KF, Sterk PJ, Djukanović R, Skipp PJ, The U-Biopred Study Group. Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. J Proteome Res 2018; 17:2072-2091. [PMID: 29737851 DOI: 10.1021/acs.jproteome.8b00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMSE applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The "core" sputum proteome (proteins detected in ≥40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ≥3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMSE is influenced by several factors, with some proteins being measured in all participants' samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance.
Collapse
Affiliation(s)
- Dominic Burg
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K.,NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - James P R Schofield
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K.,NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Joost Brandsma
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Doroteya Staykova
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Caterina Folisi
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | | | - Ben Nicholas
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Yang Xian
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Anthony Rowe
- Janssen Research & Development , Buckinghamshire HP12 4DP , U.K
| | | | - Susan Wilson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Jonathan Ward
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Rene Lutter
- AMC, Department of Experimental Immunology , University of Amsterdam , 1012 WX Amsterdam , The Netherlands.,AMC, Department of Respiratory Medicine , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Louise Fleming
- Airways Disease , National Heart and Lung Institute, Imperial College, London & Royal Brompton NIHR Biomedical Research Unit , London SW7 2AZ , United Kingdom
| | - Dominick E Shaw
- Respiratory Research Unit , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Per S Bakke
- Institute of Medicine , University of Bergen , 5007 Bergen , Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine Hospital University , University of Catania , 95124 Catania , Italy
| | - Sven-Erik Dahlen
- The Centre for Allergy Research , The Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Stephen J Fowler
- Respiratory and Allergy Research Group , University of Manchester , Manchester M13 9PL , U.K
| | - Simone Hashimoto
- Department of Respiratory Medicine, Academic Medical Centre , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Ildikó Horváth
- Department of Pulmonology , Semmelweis University , Budapest 1085 , Hungary
| | - Peter Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover , 30625 Hannover , Germany
| | - Paolo Montuschi
- Faculty of Medicine , Catholic University of the Sacred Heart , 00168 Rome , Italy
| | - Marek Sanak
- Laboratory of Molecular Biology and Clinical Genetics, Medical College , Jagiellonian University , 31-007 Krakow , Poland
| | - Thomas Sandström
- Department of Medicine, Department of Public Health and Clinical Medicine Respiratory Medicine Unit , Umeå University , 901 87 Umeå , Sweden
| | - Florian Singer
- University Children's Hospital Zurich , 8032 Zurich , Switzerland
| | - Kai Sun
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Ioannis Pandis
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM , Université de Lyon , 69007 Lyon , France
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK , Stockley Park , Uxbridge UB11 1BT , U.K
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section , National Heart and Lung Institute, Imperial College London , Dovehouse Street , London SW3 6LR , U.K
| | - Kian Fan Chung
- Airways Disease , National Heart and Lung Institute, Imperial College, London & Royal Brompton NIHR Biomedical Research Unit , London SW7 2AZ , United Kingdom
| | - Peter J Sterk
- AMC, Department of Experimental Immunology , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | | |
Collapse
|
9
|
Belvisi MG, Baker K, Malloy N, Raemdonck K, Dekkak B, Pieper M, Nials AT, Birrell MA. Modelling the asthma phenotype: impact of cigarette smoke exposure. Respir Res 2018; 19:89. [PMID: 29747661 PMCID: PMC5946402 DOI: 10.1186/s12931-018-0799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. Methods Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. Results CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. Conclusions These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Katie Baker
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicole Malloy
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Bilel Dekkak
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Michael Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Rhein, Germany
| | | | - Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden. .,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
10
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
11
|
Baker K, Raemdonck K, Snelgrove RJ, Belvisi MG, Birrell MA. Characterisation of a murine model of the late asthmatic response. Respir Res 2017; 18:55. [PMID: 28399855 PMCID: PMC5387391 DOI: 10.1186/s12931-017-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR. METHODS C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools. RESULTS Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell-B-cell - IgE axis appear to be protective in this murine model. CONCLUSION Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies.
Collapse
Affiliation(s)
- Katie Baker
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Robert J Snelgrove
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
12
|
Smet M, Van Hoecke L, De Beuckelaer A, Vander Beken S, Naessens T, Vergote K, Willart M, Lambrecht BN, Gustafsson JÅ, Steffensen KR, Grooten J. Cholesterol-sensing liver X receptors stimulate Th2-driven allergic eosinophilic asthma in mice. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:350-61. [PMID: 27621817 PMCID: PMC5004289 DOI: 10.1002/iid3.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) are nuclear receptors that function as cholesterol sensors and regulate cholesterol homeostasis. High cholesterol has been recognized as a risk factor in asthma; however, the mechanism of this linkage is not known. METHODS To explore the importance of cholesterol homeostasis for asthma, we investigated the contribution of LXR activity in an ovalbumin- and a house dust mite-driven eosinophilic asthma mouse model. RESULTS In both models, airway inflammation, airway hyper-reactivity, and goblet cell hyperplasia were reduced in mice deficient for both LXRα and LXRβ isoforms (LXRα(-/-)β(-/-)) as compared to wild-type mice. Inversely, treatment with the LXR agonist GW3965 showed increased eosinophilic airway inflammation. LXR activity contributed to airway inflammation through promotion of type 2 cytokine production as LXRα(-/-)β(-/-) mice showed strongly reduced protein levels of IL-5 and IL-13 in the lungs as well as reduced expression of these cytokines by CD4(+) lung cells and lung-draining lymph node cells. In line herewith, LXR activation resulted in increased type 2 cytokine production by the lung-draining lymph node cells. CONCLUSIONS In conclusion, our study demonstrates that the cholesterol regulator LXR acts as a positive regulator of eosinophilic asthma in mice, contributing to airway inflammation through regulation of type 2 cytokine production.
Collapse
Affiliation(s)
- Muriel Smet
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium; Medical Biotechnology CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Seppe Vander Beken
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Thomas Naessens
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| | - Karl Vergote
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Monique Willart
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Bart N Lambrecht
- Department of Respiratory MedicineGhent University HospitalGhentBelgium; Inflammation Research CenterFlanders Institute for BiotechnologyGhentBelgium
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition at NovumKarolinska InstitutetStockholmSweden; Department of Biology and BiochemistryUniversity of HoustonHoustonTexas
| | - Knut R Steffensen
- Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Johan Grooten
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
| |
Collapse
|
13
|
Baker K, Raemdonck K, Dekkak B, Snelgrove RJ, Ford J, Shala F, Belvisi MG, Birrell MA. Role of the ion channel, transient receptor potential cation channel subfamily V member 1 (TRPV1), in allergic asthma. Respir Res 2016; 17:67. [PMID: 27255083 PMCID: PMC4890475 DOI: 10.1186/s12931-016-0384-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/26/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Asthma prevalence has increased world-wide especially in children; thus there is a need to develop new therapies that are safe and effective especially for patients with severe/refractory asthma. CD4(+) T cells are thought to play a central role in disease pathogenesis and associated symptoms. Recently, TRPV1 has been demonstrated to regulate the activation and inflammatory properties of CD4(+) cells. The aim of these experiments was to demonstrate the importance of CD4(+) T cells and the role of TRPV1 in an asthma model using a clinically ready TRPV1 inhibitor (XEN-D0501) and genetically modified (GM) animals. METHODS Mice (wild type, CD4 (-/-) or TRPV1 (-/-)) and rats were sensitised with antigen (HDM or OVA) and subsequently topically challenged with the same antigen. Key features associated with an allergic asthma type phenotype were measured: lung function (airway hyperreactivity [AHR] and late asthmatic response [LAR]), allergic status (IgE levels) and airway inflammation. RESULTS CD4(+) T cells play a central role in both disease model systems with all the asthma-like features attenuated. Targeting TRPV1 using either GM mice or a pharmacological inhibitor tended to decrease IgE levels, airway inflammation and lung function changes. CONCLUSION Our data suggests the involvement of TRPV1 in allergic asthma and thus we feel this target merits further investigation.
Collapse
Affiliation(s)
- Katie Baker
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. HernâniMonteiro, 4200-319, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Bilel Dekkak
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | - John Ford
- ArioPharma Limited, Iconix Park, London Road, Pampisford, CB22 3EG, UK
| | - Fisnik Shala
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
14
|
CD4⁺ and CD8⁺ T cells play a central role in a HDM driven model of allergic asthma. Respir Res 2016; 17:45. [PMID: 27112462 PMCID: PMC4845490 DOI: 10.1186/s12931-016-0359-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background The incidence of asthma is increasing at an alarming rate and while the current available therapies are effective in the majority of patients they fail to adequately control symptoms at the more severe end of the disease spectrum. In the search to understand disease pathogenesis and find effective therapies animal models are often employed. As exposure to house dust mite (HDM) has a causative link, it is thought of as the allergen of choice for modelling asthma. The objective was to develop a HDM driven model of asthmatic sensitisation and characterise the role of key allergic effector cells/mediators. Methods Mice were sensitised with low doses of HDM and then subsequently challenged. Cellular inflammation, IgE and airway responsiveness (AHR) was assessed in wild type mice or CD4+/CD8+ T cells, B cells or IgE knock out mice. Results Only those mice sensitised with HDM responded to subsequent low dose topical challenge. Similar to the classical ovalbumin model, there was no requirement for systemic alum sensitisation. Characterisation of the role of effector cells demonstrated that the allergic cellular inflammation and AHR was dependent on CD4+ and CD8+ T cells but not B cells or IgE. Finally, we show that this model, unlike the classic OVA model, appears to be resistant to developing tolerance. Conclusions This CD4+/CD8+ T cell dependent, HDM driven model of allergic asthma exhibits key features of asthma. Furthermore, we suggest that the ability to repeat challenge with HDM means this model is amenable to studies exploring the effect of therapeutic dosing in chronic, established disease. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0359-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P, Belvisi MG. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax 2015; 70:740-7. [PMID: 25939749 PMCID: PMC4516010 DOI: 10.1136/thoraxjnl-2014-206592] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway. Current treatment options (long acting β-adrenoceptor agonists and glucocorticosteroids) are not optimal as they are only effective in certain patient groups and safety concerns exist regarding both compound classes. Therefore, novel bronchodilator and anti-inflammatory strategies are being pursued. Prostaglandin E2 (PGE2) is an arachidonic acid-derived eicosanoid produced by the lung which acts on four different G-protein coupled receptors (EP1-4) to cause an array of beneficial and deleterious effects. The aim of this study was to identify the EP receptor mediating the anti-inflammatory actions of PGE2 in the lung using a range of cell-based assays and in vivo models. METHODS AND RESULTS It was demonstrated in three distinct model systems (innate stimulus, lipopolysaccharide (LPS); allergic response, ovalbumin (OVA); inhaled pollutant, cigarette smoke) that mice missing functional EP4 (Ptger4(-/-)) receptors had higher levels of airway inflammation, suggesting that endogenous PGE2 was suppressing inflammation via EP4 receptor activation. Cell-based assay systems (murine and human monocytes/alveolar macrophages) demonstrated that PGE2 inhibited cytokine release from LPS-stimulated cells and that this was mimicked by an EP4 (but not EP1-3) receptor agonist and inhibited by an EP4 receptor antagonist. The anti-inflammatory effect occurred at the transcriptional level and was via the adenylyl cyclase/cAMP/ cAMP-dependent protein kinase (PKA) axis. CONCLUSION This study demonstrates that EP4 receptor activation is responsible for the anti-inflammatory activity of PGE2 in a range of disease relevant models and, as such, could represent a novel therapeutic target for chronic airway inflammatory conditions.
Collapse
Affiliation(s)
- Mark A Birrell
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-Asthma UK Centre in Allergic Mechanisms of Asthma
| | - Sarah A Maher
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Bilel Dekkak
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Jones
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sissie Wong
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Brook
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-Asthma UK Centre in Allergic Mechanisms of Asthma
| |
Collapse
|
16
|
Shi Y, Xu X, Tan Y, Mao S, Fang S, Gu W. A liver-X-receptor ligand, T0901317, attenuates IgE production and airway remodeling in chronic asthma model of mice. PLoS One 2014; 9:e92668. [PMID: 24681543 PMCID: PMC3969355 DOI: 10.1371/journal.pone.0092668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/25/2014] [Indexed: 01/09/2023] Open
Abstract
The liver-X-receptors have shown anti-inflammatory ability in several animal models of respiratory disease. Our purpose is to investigate the effect of LXR ligand in allergen-induced airway remodeling in mice. Ovalbumin-sensitized mice were chronically challenged with aerosolized ovalbumin for 8 weeks. Some mice were administered a LXR agonist, T0901317 (12.5, 25, 50 mg/kg bodyweight) before challenge. Then mice were evaluated for airway inflammation, airway hyperresponsiveness and airway remodeling. T0901317 failed to attenuate the inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid. But the application of T0901317 reduced the thickness of airway smooth muscle and the collagen deposition. Meanwhile, T0901317 treatment evidently abolished the high level of OVA-specific IgE, TGF-β1 and MMP-9 in lung. So LXRs may attenuate the progressing of airway remodeling, providing a potential treatment of asthma.
Collapse
Affiliation(s)
- Ying Shi
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiantao Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Birrell MA, Maher SA, Buckley J, Dale N, Bonvini S, Raemdonck K, Pullen N, Giembycz MA, Belvisi MG. Selectivity profiling of the novel EP2 receptor antagonist, PF-04418948, in functional bioassay systems: atypical affinity at the guinea pig EP2 receptor. Br J Pharmacol 2014; 168:129-38. [PMID: 22747912 DOI: 10.1111/j.1476-5381.2012.02088.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Understanding the role of the EP(2) receptor has been hampered by the lack of a selective antagonist. Recently, a selective EP(2) receptor antagonist, PF-04418948, has been discovered. The aim of this study was to demonstrate the selectivity profile of PF-04418948 for the EP(2) receptor over other EP receptors using a range of isolated tissue systems. EXPERIMENTAL APPROACH PF-04418948 was profiled on a range of isolated tissues to assess its EP receptor potency and selectivity: ONO-DI-004-induced contraction of guinea pig trachea (EP(1)); ONO-AE1-259 and PGE(2)- induced relaxation of mouse and guinea pig trachea (EP(2)); PGE(2)-induced depolarization of guinea pig isolated vagus (EP(3)); PGE(2)-induced relaxation of human and rat trachea (EP(4)). PF-04418948 was also profiled in functional murine TP, IP, DP and FP receptor assays. KEY RESULTS In bioassay systems, where assessment of potency/selectivity is made against the 'native' receptor, PF-04418948 only acted as an antagonist of EP(2) receptor-mediated events. PF-04418948 competitively inhibited relaxations of murine and guinea pig trachea induced by ONO-AE1-259 and PGE(2) respectively. However, the affinity of PF-04418948 was not equal in the two preparations. CONCLUSIONS AND IMPLICATIONS Using a wide range of bioassay systems, we have demonstrated that PF-04418948 is a selective EP(2)-receptor antagonist. Interestingly, an atypically low affinity was found on the guinea pig trachea, questioning its utility as an EP(2) receptor assay system. Nevertheless, this compound should be an invaluable tool for investigating the biological activity of PGE(2) and the role of EP(2) receptors in health and disease.
Collapse
Affiliation(s)
- Mark A Birrell
- Respiratory Pharmacology, Pharmacology & Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Higham A, Lea S, Plumb J, Maschera B, Simpson K, Ray D, Singh D. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res 2013; 14:106. [PMID: 24118845 PMCID: PMC3852990 DOI: 10.1186/1465-9921-14-106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties. METHODS We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation. RESULTS The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production. CONCLUSIONS GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Simon Lea
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Jonathan Plumb
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Barbara Maschera
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Karen Simpson
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - David Ray
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Dave Singh
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
19
|
Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett 2012; 328:1-9. [PMID: 22939994 DOI: 10.1016/j.canlet.2012.08.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 01/24/2023]
Abstract
Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators.
Collapse
|
20
|
Cai Y, Cao YX, Lu SM, Xu CB, Cardell LO. Infliximab alleviates inflammation and ex vivo airway hyperreactivity in asthmatic E3 rats. Int Immunol 2011; 23:443-51. [PMID: 21677048 DOI: 10.1093/intimm/dxr032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of asthma, and neutralization of TNF-α is an effective therapy for inflammatory diseases. The present study tested the idea that a TNF-α antibody, infliximab, may be useful in the management of asthma. E3 rats were immunized with ovalbumin (OVA)/alum and received infliximab intra-peritoneally. Two weeks later, OVA-PBS was instilled intranasally daily for 7 days. Bronchoalveolar lavage fluids (BALFs), serum and lung homogenates were collected for analysis of cells and inflammatory mediators. Contractile responses of lobar-bronchus segments to agonists were functionally tested. Pulmonary tissues were investigated using histological examination. The results showed that the sensitized 'model E3 rats' exhibited an increase in the total amount of inflammatory cells, primarily eosinophils, in BALF and pulmonary tissue, as well as epithelial damage. Serum levels of IgE increased and so did the levels of nitric oxide, inducible nitric oxide synthase, TNF-α and IL-4, IL-5 and IL-13 in lung homogenate and serum. Furthermore, the contractile responses in bronchi induced by endothelin-1, sarafotoxin 6c and bradykinin increased and isoprenaline-induced relaxations decreased. All these changes induced by the sensitization procedure were reduced by the infliximab treatment. The results suggest that infliximab prevents the development of local airway inflammation and antagonizes changes of the bronchial smooth muscle receptor phenotype, thereby blocking the development of airway smooth muscle hyperreactivity of asthmatic rats.
Collapse
Affiliation(s)
- Yan Cai
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP4 receptor as a new target for bronchodilator therapy. Thorax 2011; 66:1029-35. [PMID: 21606476 PMCID: PMC3221321 DOI: 10.1136/thx.2010.158568] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Asthma and chronic obstructive pulmonary disease are airway inflammatory diseases characterised by airflow obstruction. Currently approved bronchodilators such as long-acting β2 adrenoceptor agonists are the mainstay treatments but often fail to relieve symptoms of chronic obstructive pulmonary disease and severe asthma and safety concerns have been raised over long-term use. The aim of the study was to identify the receptor involved in prostaglandin E2 (PGE2)-induced relaxation in guinea pig, murine, monkey, rat and human airways in vitro. Methods Using an extensive range of pharmacological tools, the relaxant potential of PGE2 and selective agonists for the EP1–4 receptors in the presence and absence of selective antagonists in guinea pig, murine, monkey, rat and human isolated airways was investigated. Results In agreement with previous studies, it was found that the EP2 receptor mediates PGE2-induced relaxation of guinea pig, murine and monkey trachea and that the EP4 receptor mediates PGE2-induced relaxation of the rat trachea. These data have been confirmed in murine airways from EP2 receptor-deficient mice (Ptger2). In contrast to previous publications, a role for the EP4 receptor in relaxant responses in human airways in vitro was found. Relaxant activity of AH13205 (EP2 agonist) was also demonstrated in guinea pig but not human airway tissue, which may explain its failure in clinical studies. Conclusion Identification of the receptor mediating PGE2-induced relaxation represents a key step in developing a novel bronchodilator therapy. These data explain the lack of bronchodilator activity observed with selective EP2 receptor agonists in clinical studies.
Collapse
Affiliation(s)
- James Buckley
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Chan JF, Cummins CL. Liver X Receptors as Therapeutic Targets for Managing Cholesterol: Implications for Atherosclerosis and Other Inflammatory Conditions. ACTA ACUST UNITED AC 2009; 4:29-40. [PMID: 20852746 DOI: 10.2217/17584299.4.1.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a disease characterized by excess cholesterol and inflammation in the blood vessels. The liver X receptors (alpha and beta) are members of the nuclear hormone receptor family that are activated by endogenous cholesterol metabolites. These receptors are widely expressed with a tissue distribution that includes the liver, intestine and macrophage. Upon activation, these receptors have been shown to increase reverse cholesterol transport from the macrophage back to the liver to aid in the removal of excess cholesterol. More recently, they have also been shown to inhibit the inflammatory response in macrophages. These functions are accomplished through direct regulation of gene transcription. Herein, we will describe the key benefits and potential risks of targeting the LXRs for the treatment of atherosclerosis.
Collapse
|