1
|
Sukumar G, Rahul, Nayani K, Mainkar PS, Prashanth J, Sridhar B, Sarma AVS, Bharatam J, Chandrasekhar S. 6-Strand to Stable 10/12 Helix Conformational Switch by Incorporating Flexible β-hGly in the Homooligomers of Camphor Derived β-Amino Acid: NMR and X-Ray Crystallographic Evidence. Angew Chem Int Ed Engl 2024; 63:e202403321. [PMID: 38482551 DOI: 10.1002/anie.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 04/07/2024]
Abstract
Rational design of unnatural amino acid building blocks capable of stabilizing predictable secondary structures similar to protein fragments is pivotal for foldamer chemistry/catalysis. Here, we introduce novel β-amino acid building blocks: [1S,2R,4R]exoCDA and [1S,2S,4R]endoCDA, derived from the abundantly available R(+)-camphor, which is traditionally known for its medicinal value. Further, we demonstrate that the homooligomers of exoCDA adopt 6-strand conformation, which switches to a robust 10/12-helix simply by inserting flexible β-hGly spacer at alternate positions (1 : 1 β-hGly/exoCDA heterooligomers), as evident by DFT-calculations, solution-state NMR spectroscopy and X-ray crystallography. To the best of our knowledge, this is the first example of crystalline-state structure of left-handed 10/12-mixed helix, that is free from the conventional approach of employing β-amino acids of either alternate chirality or alternate β2/β3 substitutions, to access the 10/12-helix. The results also show that the homooligomers of heterochiral exoCDA don't adopt helical fold, instead exhibit banana-shaped strands, whereas the homodimers of the other diastereomer endoCDA, nucleate 8-membered turns. Furthermore, the homo-exoCDA and hetero-[β-hGly-exoCDA] oligomers are found to exhibit self-association properties with distinct morphological features. Overall, the results offer new possibilties of constructing discrete stable secondary and tertiary structures based on CDAs, which can accommodate flexible residues with desired side-chain substitutions.
Collapse
Affiliation(s)
- Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh, 533296, India
| | - Rahul
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jupally Prashanth
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akella V S Sarma
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadeesh Bharatam
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Tököli A, Mag B, Bartus É, Wéber E, Szakonyi G, Simon MA, Czibula Á, Monostori É, Nyitray L, Martinek TA. Proteomimetic surface fragments distinguish targets by function. Chem Sci 2020; 11:10390-10398. [PMID: 34094300 PMCID: PMC8162404 DOI: 10.1039/d0sc03525d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
The fragment-centric design promises a means to develop complex xenobiotic protein surface mimetics, but it is challenging to find locally biomimetic structures. To address this issue, foldameric local surface mimetic (LSM) libraries were constructed. Protein affinity patterns, ligand promiscuity and protein druggability were evaluated using pull-down data for targets with various interaction tendencies and levels of homology. LSM probes based on H14 helices exhibited sufficient binding affinities for the detection of both orthosteric and non-orthosteric spots, and overall binding tendencies correlated with the magnitude of the target interactome. Binding was driven by two proteinogenic side chains and LSM probes could distinguish structurally similar proteins with different functions, indicating limited promiscuity. Binding patterns displayed similar side chain enrichment values to those for native protein-protein interfaces implying locally biomimetic behavior. These analyses suggest that in a fragment-centric approach foldameric LSMs can serve as useful probes and building blocks for undruggable protein interfaces.
Collapse
Affiliation(s)
- Attila Tököli
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H6720 Szeged Hungary
| | - Beáta Mag
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H6720 Szeged Hungary
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H6720 Szeged Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged Dóm tér 8 H6720 Szeged Hungary
| | - Edit Wéber
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H6720 Szeged Hungary
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, University of Szeged Somogyi u. 4. H6720 Szeged Hungary
| | - Márton A Simon
- Department of Biochemistry, Eötvös Loránd University Pázmány Péter sétány 1/C H1077 Budapest Hungary
| | - Ágnes Czibula
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Centre Temesvári krt. 62 H6726 Szeged Hungary
| | - Éva Monostori
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Centre Temesvári krt. 62 H6726 Szeged Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University Pázmány Péter sétány 1/C H1077 Budapest Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H6720 Szeged Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged Dóm tér 8 H6720 Szeged Hungary
| |
Collapse
|
5
|
Outlaw VK, Kreitler DF, Stelitano D, Porotto M, Moscona A, Gellman SH. Effects of Single α-to-β Residue Replacements on Recognition of an Extended Segment in a Viral Fusion Protein. ACS Infect Dis 2020; 6:2017-2022. [PMID: 32692914 PMCID: PMC8019249 DOI: 10.1021/acsinfecdis.0c00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Partial replacement of α-amino acid residues with β-amino acid residues has been established as a strategy for preserving target-engagement by helix-forming polypeptides while altering other properties. The impact of β-residue incorporation within polypeptides that adopt less regular conformations, however, has received less attention. The C-terminal heptad repeat (HRC) domains of fusion glycoproteins from pathogenic paramyxoviruses contain a segment that must adopt an extended conformation in order to coassemble with the N-terminal heptad repeat (HRN) domain in the postfusion state and drive a merger of the viral envelope with a target cell membrane. Here, we examine the impact of single α-to-β substitutions within this extended N-terminal segment of an engineered HRC peptide designated VIQKI. Stabilities of hexameric coassemblies formed with the native human parainfluenza virus 3 (HPIV3) HRN have been evaluated, the structures of five coassemblies have been determined, and antiviral efficacies have been measured. Many sites within the extended segment show functional tolerance of α-to-β substitution. These results offer a basis for future development of paramyxovirus infection inhibitors with novel biological activity profiles, possibly including resistance to proteolysis.
Collapse
Affiliation(s)
- Victor K. Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Dale F. Kreitler
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Debora Stelitano
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032, United States
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, 10032, United States
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032, United States
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, 10032, United States
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032, United States
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, 10032, United States
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, 10032, United States
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, 10032, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| |
Collapse
|
6
|
Andrei SA, Thijssen V, Brunsveld L, Ottmann C, Milroy LG. A study on the effect of synthetic α-to-β 3-amino acid mutations on the binding of phosphopeptides to 14-3-3 proteins. Chem Commun (Camb) 2020; 55:14809-14812. [PMID: 31763628 DOI: 10.1039/c9cc07982c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here we describe the synthesis of a series of α,β-phosphopeptides, based on the phosphoepitope site on YAP1 (yes-associated protein 1), and the biochemical, biophysical and structural characterization of their binding to 14-3-3 proteins. The impact of systematic mono- and di-substitution of α → β3 amino acid residues around the phosphoserine residue are discussed. Our results confirm the important role played by the +2 proline residue in the thermodynamics and structure of the phosphoepitope/14-3-3 interaction.
Collapse
Affiliation(s)
- Sebastian A Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|