1
|
Tong L, Qiu J, Xu Y, Lian S, Xu Y, Wu X. Programmed Cell Death in Rheumatoid Arthritis. J Inflamm Res 2025; 18:2377-2393. [PMID: 39991656 PMCID: PMC11846511 DOI: 10.2147/jir.s499345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease characterised by synovial inflammation, synovial pannus formation and subsequent destruction of articular cartilage and bone. Programmed cell death (PCD), encompassing apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis, plays a pivotal role in the pathogenesis of RA. An imbalance in PCD causes a variety of immune cells to release large amounts of inflammatory factors and mediators that exacerbate not only chronic synovial inflammation, but also bone and joint damage. The purpose of this article is to review the relevant studies between PCD and RA, with the aim of providing further insights and considerations for a deeper understanding of the pathogenesis of RA and to guide clinical management.
Collapse
Affiliation(s)
- Luyuan Tong
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yalin Xu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Shijing Lian
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yanqiu Xu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
2
|
Li B, Ling Z, Wang Y, Xing Y. Receptor-Interacting Protein Kinase 3 Augments Neuroinflammation by Facilitating Neutrophil Infiltration during an Ischemic Stroke. J Vasc Res 2024; 62:51-62. [PMID: 39571563 DOI: 10.1159/000542571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Neutrophil infiltration is responsible for the neuroinflammation during an ischemic stroke. Here, we explored the role of receptor-interacting protein kinase 3 (RIP3) in neutrophil infiltration during an ischemic stroke. METHODS The rat middle cerebral artery occlusion (MCAO) model was utilized to identify pivotal proteins involved in neutrophil infiltration during an ischemic stroke. Neutrophils were isolated from the peripheral blood of mice, and a co-immunoprecipitation (co-IP) assay was performed to identify the proteins that interact with RIP3. RESULTS The rat MCAO model was successfully established. Myeloperoxidase (MPO) was significantly upregulated in the MCAO group, indicating the presence of neutrophil infiltration. RIP3 protein level exhibited a similar trend to MPO protein level, suggesting that neuroinflammation might be partly activated by RIP3 through the promotion of neutrophil infiltration. Co-IP and mass spectrometry analyses suggested that RIP3 facilitated neutrophil infiltration partly by affecting protein kinases (Rock1 and Prkaca) downstream of RIP3, and the interaction between RIP3 and Rock1 or Prkaca was validated by IF and co-IP assays. CONCLUSION In this study, it was observed that RIP3 affects neutrophil infiltration, a critical phenomenon associated with neuronal injury during ischemic stroke, partly by the modulation of downstream proteins such as Rock1 and Prkaca.
Collapse
Affiliation(s)
- Baiyu Li
- Department of Neurology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Zexia Ling
- Department of Gastroenterology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Yanyan Wang
- Department of Neurology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Yinhua Xing
- Department of Gastroenterology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
3
|
Liu K, Wang M, Li D, Duc Duong NT, Liu Y, Ma J, Xin K, Zhou Z. PANoptosis in autoimmune diseases interplay between apoptosis, necrosis, and pyroptosis. Front Immunol 2024; 15:1502855. [PMID: 39544942 PMCID: PMC11560468 DOI: 10.3389/fimmu.2024.1502855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
PANoptosis is a newly identified inflammatory programmed cell death (PCD) that involves the interplay of apoptosis, necrosis, and pyroptosis. However, its overall biological effects cannot be attributed to any one type of PCD alone. PANoptosis is regulated by a signaling cascade triggered by the recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by various sensors. This triggers the assembly of the PANoptosome, which integrates key components from other PCD pathways via adapters and ultimately activates downstream execution molecules, resulting in cell death with necrotic, apoptotic, and pyroptotic features. Autoimmune diseases are characterized by reduced immune tolerance to self-antigens, leading to abnormal immune responses, often accompanied by systemic chronic inflammation. Consequently, PANoptosis, as a unique innate immune-inflammatory PCD pathway, has significant pathophysiological relevance to inflammation and autoimmunity. However, most previous research on PANoptosis has focused on tumors and infectious diseases, leaving its activation and role in autoimmune diseases unclear. This review briefly outlines the characteristics of PANoptosis and summarizes several newly identified PANoptosome complexes, their activation mechanisms, and key components. We also explored the dual role of PANoptosis in diseases and potential therapeutic approaches targeting PANoptosis. Additionally, we review the existing evidence for PANoptosis in several autoimmune diseases and explore the potential regulatory mechanisms involved.
Collapse
Affiliation(s)
- Kangnan Liu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mi Wang
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongdong Li
- Oncology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | | | - Yawei Liu
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Kai Xin
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| |
Collapse
|
4
|
Peng L. Necroptosis and autoimmunity. Clin Immunol 2024; 266:110313. [PMID: 39002793 DOI: 10.1016/j.clim.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Autoimmunity is a normal physiological state that requires immunological homeostasis and surveillance, whereas necroptosis is a type of inflammatory cell death. When necroptosis occurs, various immune system cells must perform their appropriate duties to preserve immunological homeostasis, whether the consequence is expanding or limiting the inflammatory response and the pathological condition is cleared or progresses to the autoimmune disease stage. This article discusses necroptosis based on RIP homotypic interaction motif (RHIM) interaction under various physiological and pathological situations, with the RIPK1-RIPK3-MLKL necrosome serving as the regulatory core. In addition, the cell biology of necroptosis involved in autoimmunity and its application in autoimmune diseases were also reviewed.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road No.305, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
5
|
Wen P, Zhao Y, Yang M, Yang P, Nan K, Liu L, Xu P. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation. J Cell Mol Med 2024; 28:e18557. [PMID: 39031474 PMCID: PMC11258886 DOI: 10.1111/jcmm.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Yan Zhao
- Department of Laboratory, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Mingyi Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Kai Nan
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Lin Liu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Xu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
6
|
Wan W, Qian X, Zhou B, Gao J, Deng J, Zhao D. Integrative analysis and validation of necroptosis-related molecular signature for evaluating diagnosis and immune features in Rheumatoid arthritis. Int Immunopharmacol 2024; 131:111809. [PMID: 38484666 DOI: 10.1016/j.intimp.2024.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that is characterized by persistent morning stiffness, joint pain, and swelling. However, there is a lack of reliable diagnostic markers and therapeutic targets that are both effective and trustworthy. METHODS In this study, gene expression profiles (GSE89408, GSE55235, GSE55457, and GSE77298) were obtained from the Gene Expression Omnibus database. Differentially expressed necroptosis-related genes were attained from intersection of necroptosis-related gene set, differentially expressed genes, and weighted gene co-expression network analysis. The LASSO, random forest, and SVM-RFE machine learning algorithms were utilized to further screen potential diagnostic genes for RA. Immune cell infiltration was analyzed using the CIBERSORT method. The expressions of diagnostic genes were validated through quantitative real-time PCR, western blotting, immunohistochemistry, and immunofluorescence staining in synovial tissues collected from three trauma controls and three RA patients. RESULTS Five core necroptosis-related genes (FAS, CYBB, TNFSF10, EIF2AK2, and BIRC2) were identified as potential biomarkers for RA. Two different necroptosis patterns based on these five genes were confirmed to significantly correlated with immune cells (especially macrophages). In vitro experiments showed significantly higher mRNA and protein expression levels of CYBB and EIF2AK2 in RA patients compared to normal controls, consistent with the bioinformatics analysis results. CONCLUSION Our study identified a novel necroptosis-related subtype and five diagnostic biomarkers of RA, revealed vital roles in the development and occurrence of RA, and offered potential targets for clinical diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Wei Wan
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xinyu Qian
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bole Zhou
- Department of Joint Bone Disease Surgery, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jiewen Deng
- Department of Cardiovascular Diseases, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Shanghai Changhai Hospital, the first affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
7
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
9
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
11
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
12
|
Wang Z, Wang J, Lan T, Zhang L, Yan Z, Zhang N, Xu Y, Tao Q. Role and mechanism of fibroblast-activated protein-α expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Front Immunol 2023; 14:1135384. [PMID: 37006278 PMCID: PMC10064071 DOI: 10.3389/fimmu.2023.1135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast-activated protein-α (FAP) is a type II integrated serine protease expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and stably overexpress FAP and play important roles in regulating the cellular immune, inflammatory, invasion, migration, proliferation, and angiogenesis responses in the synovial region. Overexpression of FAP is regulated by the initial inflammatory microenvironment of the disease and epigenetic signaling, which promotes RA development by regulating FLSs or affecting the signaling cross-linking FLSs with other cells at the local synovium and inflammatory stimulation. At present, several treatment options targeting FAP are in the process of development. This review discusses the basic features of FAP expressed on the surface of FLSs and its role in RA pathophysiology and advances in targeted therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Jinping Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Tianyi Lan
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Liubo Zhang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zeran Yan
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| |
Collapse
|
13
|
Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front Immunol 2022; 12:809806. [PMID: 35003139 PMCID: PMC8739882 DOI: 10.3389/fimmu.2021.809806] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that can lead to clinical manifestations of systemic diseases. Its leading features include chronic synovial inflammation and degeneration of the bones and joints. In the past decades, multiple susceptibilities for rheumatoid arthritis have been identified along with the development of a remarkable variety of drugs for its treatment; which include analgesics, glucocorticoids, nonsteroidal anti-inflammatory medications (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic response modifiers (bDMARDs). Despite the existence of many clinical treatment options, the prognosis of some patients remains poor due to complex mechanism of the disease. Programmed cell death (PCD) has been extensively studied and ascertained to be one of the essential pathological mechanisms of RA. Its dysregulation in various associated cell types contributes to the development of RA. In this review, we summarize the role of apoptosis, cell death-associated neutrophil extracellular trap formation, necroptosis, pyroptosis, and autophagy in the pathophysiology of RA to provide a theoretical reference and insightful direction to the discovery and development of novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
14
|
Wang X, Avsec D, Obreza A, Yousefi S, Mlinarič-Raščan I, Simon HU. A Putative Serine Protease is Required to Initiate the RIPK3-MLKL-Mediated Necroptotic Death Pathway in Neutrophils. Front Pharmacol 2021; 11:614928. [PMID: 33551816 PMCID: PMC7860068 DOI: 10.3389/fphar.2020.614928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Adhesion receptors, such as CD44, have been shown to activate receptor interacting protein kinase-3 (RIPK3)—mixed lineage kinase-like (MLKL) signaling, leading to a non-apoptotic cell death in human granulocyte/macrophage colony-stimulating factor (GM-CSF) – primed neutrophils. The signaling events of this necroptotic pathway, however, remain to be investigated. In the present study, we report the design, synthesis, and characterization of a series of novel serine protease inhibitors. Two of these inhibitors, compounds 1 and 3, were able to block CD44-triggered necroptosis in GM-CSF-primed neutrophils. Both inhibitors prevented the activation of MLKL, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3’—kinase (PI3K), hence blocking the increased levels of reactive oxygen species (ROS) required for cell death. Although compounds one and three partially inhibited isolated human neutrophil elastase (HNE) activity, we obtained no pharmacological evidence that HNE is involved in the initiation of this death pathway within a cellular context. Interestingly, neither serine protease inhibitor had any effect on FAS receptor-mediated apoptosis. Taken together, these results suggest that a serine protease is involved in non-apoptotic CD44-triggered RIPK3-MLKL-dependent neutrophil cell death, but not FAS receptor-mediated caspase-dependent apoptosis. Thus, a pharmacological block on serine proteases might be beneficial for preventing exacerbation of disease in neutrophilic inflammatory responses.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | - Damjan Avsec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Obreza
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| |
Collapse
|
15
|
Gigon L, Yousefi S, Karaulov A, Simon HU. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergol Int 2021; 70:30-38. [PMID: 33277190 DOI: 10.1016/j.alit.2020.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils and eosinophils are granulocytes which are characterized by the presence of granules in the cytoplasm. Granules provide a safe storage site for granule proteins that play important roles in the immune function of granulocytes. Upon granulocytes activation, diverse proteins are released from the granules into the extracellular space and contribute to the fight against infections. In this article, we describe granule proteins of both neutrophils and eosinophils able to kill pathogens and review their anticipated mechanism of antimicrobial toxicity. It should be noted that an excess of granules protein release can lead to tissue damage of the host resulting in chronic inflammation and organ dysfunction.
Collapse
|
16
|
Gómez-Martín C, Aparicio-Puerta E, Medina JM, Barturen G, Oliver JL, Hackenberg M. geno 5mC: A Database to Explore the Association between Genetic Variation (SNPs) and CpG Methylation in the Human Genome. J Mol Biol 2020; 433:166709. [PMID: 33188782 DOI: 10.1016/j.jmb.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 01/23/2023]
Abstract
Genetic variation, gene expression and DNA methylation influence each other in a complex way. To study the impact of sequence variation and DNA methylation on gene expression, we generated geno5mC, a database that contains statistically significant SNP-CpG associations that are biologically classified either through co-localization with known regulatory regions (promoters and enhancers), or through known correlations with the expression levels of nearby genes. The SNP rs727563 can be used to illustrate the usefulness of this approach. This SNP has been associated with inflammatory bowel disease through GWAS, but it is not located near any gene related to this phenotype. However, geno5mC reveals that rs727563 is associated with the methylation state of several CpGs located in promoter regions of genes reported to be involved in inflammatory processes. This case exemplifies how geno5mC can be used to infer relevant and previously unknown interactions between described disease-associated SNPs and their functional targets.
Collapse
Affiliation(s)
- C Gómez-Martín
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Lab. de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - E Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Lab. de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain; Instituto de Investigación Biosanitaria (IBS) Granada, University Hospitals of Granada-University, Granada, Spain, Conocimiento s/n, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - J M Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Lab. de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Guillermo Barturen
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Genetics of Complex Diseases, 18016 Granada, Spain
| | - J L Oliver
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Lab. de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - M Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Lab. de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain; Instituto de Investigación Biosanitaria (IBS) Granada, University Hospitals of Granada-University, Granada, Spain, Conocimiento s/n, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.
| |
Collapse
|
17
|
Weir A, Hughes S, Rashidi M, Hildebrand JM, Vince JE. Necroptotic movers and shakers: cell types, inflammatory drivers and diseases. Curr Opin Immunol 2020; 68:83-97. [PMID: 33160107 DOI: 10.1016/j.coi.2020.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The necroptotic cell death pathway has received significant attention for its ability to trigger inflammatory responses and its potential involvement in related conditions. Recent insights into the essential membrane damaging necroptotic pseudokinase effector, Mixed lineage kinase domain like (MLKL), have revealed a number of diverse MLKL functions that contribute to the inflammatory nature of necroptosis. Here we review distinct MLKL signalling roles and document the immunogenic molecules released by necroptosis. We discuss specific in vivo MLKL-driven responses, the activation of inflammasome complexes and innate lymphoid cells, which have been documented to drive disease. Finally, we list necroptotic competent cell types and their involvement in MLKL-driven cell death-associated and inflammatory-associated conditions.
Collapse
Affiliation(s)
- Ashley Weir
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sebastian Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|