1
|
Ferrara Muñiz X, Marques da Silva W, Garbaccio SG, Garro CJ, Sammarruco RA, Encinas M, Carignano HA, Bianco MV, Zumárraga MJ, Cataldi ÁA, Eirin ME. Performance of the PhoP (Rv0757/Mb0780) protein as diagnostic antigen for bovine tuberculosis. Res Vet Sci 2025; 184:105513. [PMID: 39753057 DOI: 10.1016/j.rvsc.2024.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Bovine tuberculosis (bTB), a global zoonotic disease, causes negative effects on human and animal health. PhoP protein is a key regulator of pathogenic phenotypes in members of the Mycobacterium tuberculosis complex, which includes the causative agent of bTB. Despite extensive research on this protein focused in deciphering its regulatory role, little was explored about it as a diagnostic antigen. In humans, a novel role of anti-PhoP antibodies as a possible marker for the diagnosis of TB was demonstrated. However, this issue was not addressed in bovines. In this study, antigenic properties of the PhoP protein were evaluated in naturally Mycobacterium bovis (M. bovis) infected bovines. A high homology of PhoP (≥ 75 %) was observed in environmental mycobacterial species and other genera such as Salmonella and Pasteurella. Using the IFN-gamma release assay (IGRA), we detected cell-mediated immune response against PhoP in cattle from infected herds (25 %; IC 95 % 3.2-65.1), although it was significantly lower than that evoked by the reference antigens, ESAT-6/CFP-10/Rv3615c (75 %; IC95 % 34.9-96.8), and the purified protein derivative (87.5 %; IC 95 % 47.4-99.7) (p < 0.05)). Animals from a bTB free area showed no response against PhoP when analyzed by IGRA. Although, the humoral response detected 62.5 % (CI95% 24.5-91.5) of naturally infected animals, there was 100 % cross-reactivity among TB-free cattle. These results suggest that the PhoP protein is not a promising candidate for bTB diagnosis, due to it had relatively low levels of test sensitivity in the IGRA test, and very low specificity in a humoral antibody western blot assay.
Collapse
Affiliation(s)
- Ximena Ferrara Muñiz
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Wanderson Marques da Silva
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - Sergio Gabriel Garbaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Carlos Javier Garro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Romina Ayelén Sammarruco
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IP-IPVet), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Micaela Encinas
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
| | - Hugo Adrián Carignano
- CONICET, Argentina; Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología e Innovaciones Tecnológicas (IVIT) Hurlingham, Buenos Aires, Argentina.
| | - María Verónica Bianco
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Martín José Zumárraga
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - Ángel Adrián Cataldi
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| | - María Emilia Eirin
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina.
| |
Collapse
|
2
|
Galdino Andrade TE, Scavassini Peña M, Fiorotti J, de Souza Bin R, Rodrigues Caetano A, Connelley T, Ferreira de Miranda Santos IK. Graduate Student Literature Review: The DRB3 gene of the bovine major histocompatibility complex-Discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024; 107:11324-11341. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine major histocompatibility complex (MHC), also known as the bovine leukocyte antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. The BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and Creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | - Maurício Scavassini Peña
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom, EH25 9RG
| | | |
Collapse
|
3
|
Celis-Giraldo C, Suárez CF, Agudelo W, Ibarrola N, Degano R, Díaz J, Manzano-Román R, Patarroyo MA. Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules. BIOLOGY 2024; 13:832. [PMID: 39452141 PMCID: PMC11505383 DOI: 10.3390/biology13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
- PhD Programme in Tropical Health and Development, Doctoral School “Studii Salamantini”, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos F. Suárez
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - William Agudelo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Rosa Degano
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Jaime Díaz
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel A. Patarroyo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
4
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
5
|
Villafañe L, Rocha RV, Bigi MM, Klepp LI, Taboga OA, Forrellad MA, López MG, Bigi F. Expression and field evaluation of new Mycobacterium bovis antigens. Vet Immunol Immunopathol 2024; 273:110788. [PMID: 38838485 DOI: 10.1016/j.vetimm.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.
Collapse
Affiliation(s)
- Luciana Villafañe
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Rosana Valeria Rocha
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | | | - Laura Inés Klepp
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Oscar Alberto Taboga
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Marina Andrea Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - María Gabriela López
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina; Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina.
| |
Collapse
|
6
|
Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Bohórquez MD, Ibarrola N, Suárez CF, Rodríguez K, Yepes Y, Rodríguez A, Avendaño C, López-Abán J, Manzano-Román R, Patarroyo MA. Identifying major histocompatibility complex class II-DR molecules in bovine and swine peripheral blood monocyte-derived macrophages using mAb-L243. Vaccine 2024; 42:3445-3454. [PMID: 38631956 DOI: 10.1016/j.vaccine.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Carlos F Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Kewin Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yoelis Yepes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Alexander Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, National Medical Center, Duarte, CA, United States
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
7
|
Egholm Bruun Jensen E, Reynisson B, Barra C, Nielsen M. New light on the HLA-DR immunopeptidomic landscape. J Leukoc Biol 2024; 115:913-925. [PMID: 38214568 PMCID: PMC11057780 DOI: 10.1093/jleuko/qiae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
The set of peptides processed and presented by major histocompatibility complex class II molecules defines the immunopeptidome, and its characterization holds keys to understanding essential properties of the immune system. High-throughput mass spectrometry (MS) techniques enable interrogation of the diversity and complexity of the immunopeptidome at an unprecedented scale. Here, we analyzed a large set of MS immunopeptidomics data from 40 donors, 221 samples, covering 30 unique HLA-DR molecules. We identified likely co-immunoprecipitated HLA-DR irrelevant contaminants using state-of-the-art prediction methods and unveiled novel light on the properties of HLA antigen processing and presentation. The ligandome (HLA binders) was enriched in 15-mer peptides, and the contaminome (nonbinders) in longer peptides. Classification of singletons and nested sets showed that the first were enriched in contaminants. Investigating the source protein location of ligands revealed that only contaminants shared a positional bias. Regarding subcellular localization, nested peptides were found to be predominantly of endolysosomal origin, whereas singletons shared an equal distribution between the cytosolic and endolysosomal origin. According to antigen-processing signatures, no significant differences were observed between the cytosolic and endolysosomal ligands. Further, the sensitivity of MS immunopeptidomics was investigated by analyzing overlap and saturation between biological MS replicas, concluding that at least 5 replicas are needed to identify 80% of the immunopeptidome. Moreover, the overlap in immunopeptidome between donors was found to be very low both in terms of peptides and source proteins, the latter indicating a critical HLA bias in the antigen sampling in the HLA antigen presentation. Finally, the complementarity between MS and in silico approaches for comprehensively sampling the immunopeptidome was demonstrated.
Collapse
Affiliation(s)
| | - Birkir Reynisson
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Carolina Barra
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
8
|
Silva MF, Pereira G, Mateus L, da Costa LL, Silva E. Design of a multi-epitope-based vaccine candidate against Bovine Genital Campylobacteriosis using a reverse vaccinology approach. BMC Vet Res 2024; 20:144. [PMID: 38641595 PMCID: PMC11027316 DOI: 10.1186/s12917-024-04006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.
Collapse
Affiliation(s)
- Marta Filipa Silva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Gonçalo Pereira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luísa Mateus
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Lopes da Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Elisabete Silva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
9
|
Racle J, Gfeller D. How to Predict Binding Specificity and Ligands for New MHC-II Alleles with MixMHC2pred. Methods Mol Biol 2024; 2809:215-235. [PMID: 38907900 DOI: 10.1007/978-1-0716-3874-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
MHC-II molecules are key mediators of antigen presentation in vertebrate species and bind to their ligands with high specificity. The very high polymorphism of MHC-II genes within species and the fast-evolving nature of these genes across species has resulted in tens of thousands of different alleles, with hundreds of new alleles being discovered yearly through large sequencing projects in different species. Here we describe how to use MixMHC2pred to predict the binding specificity of any MHC-II allele directly from its amino acid sequence. We then show how both MHC-II ligands and CD4+ T cell epitopes can be predicted in different species with our approach. MixMHC2pred is available at http://mixmhc2pred.gfellerlab.org/ .
Collapse
Affiliation(s)
- Julien Racle
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Pluta A, Taxis TM, van der Meer F, Shrestha S, Qualley D, Coussens P, Rola-Łuszczak M, Ryło A, Sakhawat A, Mamanova S, Kuźmak J. An immunoinformatics study reveals a new BoLA-DR-restricted CD4+ T cell epitopes on the Gag protein of bovine leukemia virus. Sci Rep 2023; 13:22356. [PMID: 38102157 PMCID: PMC10724172 DOI: 10.1038/s41598-023-48899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland.
| | - Tasia Marie Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA, 30149, USA
| | - Paul Coussens
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Anna Ryło
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Ali Sakhawat
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar, 25000, Pakistan
| | - Saltanat Mamanova
- Laboratory of Virology, Kazakh Scientific Research Veterinary Institute, LLP, 223 Raiymbek Avenue, 050000, Almaty, Republic of Kazakhstan
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
11
|
Nilsson JB, Kaabinejadian S, Yari H, Kester MG, van Balen P, Hildebrand WH, Nielsen M. Accurate prediction of HLA class II antigen presentation across all loci using tailored data acquisition and refined machine learning. SCIENCE ADVANCES 2023; 9:eadj6367. [PMID: 38000035 PMCID: PMC10672173 DOI: 10.1126/sciadv.adj6367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4+ T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immunopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes. We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across all loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes.
Collapse
Affiliation(s)
- Jonas B. Nilsson
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Saghar Kaabinejadian
- Pure MHC LLC, Oklahoma City, OK, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michel G. D. Kester
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
12
|
Bishop LJ, Stutzer C, Maritz-Olivier C. More than Three Decades of Bm86: What We Know and Where to Go. Pathogens 2023; 12:1071. [PMID: 37764879 PMCID: PMC10537462 DOI: 10.3390/pathogens12091071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Tick and tick-borne disease control have been a serious research focus for many decades. In a global climate of increasing acaricide resistance, host immunity against tick infestation has become a much-needed complementary strategy to common chemical control. From the earliest acquired resistance studies in small animal models to proof of concept in large production animals, it was the isolation, characterization, and final recombinant protein production of the midgut antigen Bm86 from the Australian cattle tick strain of Rhipicephalus (Boophilus) microplus (later reinstated as R. (B.) australis) that established tick subunit vaccines as a viable alternative in tick and tick-borne disease control. In the past 37 years, this antigen has spawned numerous tick subunit vaccines (either Bm86-based or novel), and though we are still describing its molecular structure and function, this antigen remains the gold standard for all tick vaccines. In this paper, advances in tick vaccine development over the past three decades are discussed alongside the development of biotechnology, where existing gaps and future directives in the field are highlighted.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa; (L.J.B.); (C.S.)
| |
Collapse
|
13
|
Racle J, Guillaume P, Schmidt J, Michaux J, Larabi A, Lau K, Perez MAS, Croce G, Genolet R, Coukos G, Zoete V, Pojer F, Bassani-Sternberg M, Harari A, Gfeller D. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity 2023:S1074-7613(23)00129-2. [PMID: 37023751 DOI: 10.1016/j.immuni.2023.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/09/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.
Collapse
Affiliation(s)
- Julien Racle
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| | - Philippe Guillaume
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Amédé Larabi
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kelvin Lau
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marta A S Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Raphaël Genolet
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Florence Pojer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
14
|
Shapiro IE, Bassani-Sternberg M. The impact of immunopeptidomics: From basic research to clinical implementation. Semin Immunol 2023; 66:101727. [PMID: 36764021 DOI: 10.1016/j.smim.2023.101727] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.
Collapse
Affiliation(s)
- Ilja E Shapiro
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland.
| |
Collapse
|
15
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
16
|
Illing PT, Ramarathinam SH, Purcell AW. New insights and approaches for analyses of immunopeptidomes. Curr Opin Immunol 2022; 77:102216. [PMID: 35716458 DOI: 10.1016/j.coi.2022.102216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Human leucocyte antigen (HLA) molecules play a key role in health and disease by presenting antigen to T-lymphocytes for immunosurveillance. Immunopeptidomics involves the study of the collection of peptides presented within the antigen-binding groove of HLA molecules. Identifying their nature and diversity is crucial to understanding immunosurveillance especially during infection or for the recognition and potential eradication of tumours. This review discusses recent advances in the isolation, identification, and quantitation of these peptide antigens. New informatics approaches and databases have shed light on the extent of peptide antigens derived from unconventional sources including peptides derived from transcripts associated with frame shifts, long noncoding RNA, incorrectly annotated untranslated regions, post-translational modifications, and proteasomal splicing. Several challenges remain in successful analysis of immunopeptides, yet recent developments point to unexplored biology waiting to be unravelled.
Collapse
Affiliation(s)
- Patricia T Illing
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
18
|
Kaabinejadian S, Barra C, Alvarez B, Yari H, Hildebrand WH, Nielsen M. Accurate MHC Motif Deconvolution of Immunopeptidomics Data Reveals a Significant Contribution of DRB3, 4 and 5 to the Total DR Immunopeptidome. Front Immunol 2022; 13:835454. [PMID: 35154160 PMCID: PMC8826445 DOI: 10.3389/fimmu.2022.835454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology, next-generation vaccine development and protein-drug immunogenicity assessment. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that deal with these challenges effectively and guide the analysis and interpretation of this complex type of data is currently a major bottleneck for the large-scale application of this technique. To resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA molecule, allowing to identify and characterize HLA binding motifs while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.
Collapse
Affiliation(s)
- Saghar Kaabinejadian
- Pure MHC, LLC., Oklahoma City, OK, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Bruno Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
19
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
20
|
Ramarathinam SH, Ho BK, Dudek NL, Purcell AW. HLA class II immunopeptidomics reveals that co-inherited HLA-allotypes within an extended haplotype can improve proteome coverage for immunosurveillance. Proteomics 2021; 21:e2000160. [PMID: 34357683 DOI: 10.1002/pmic.202000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Human leucocyte antigen (HLA) class II molecules in humans are encoded by three different loci, HLA-DR, -DQ, and -DP. These molecules share approximately 70% sequence similarity and all present peptide ligands to circulating T cells. While the peptide repertoires of numerous HLA-DR, -DQ, and -DP allotypes have been examined, there have been few reports on the combined repertoire of these co-inherited molecules expressed in a single cell as an extended HLA haplotype. Here we describe the endogenous peptide repertoire of a human B lymphoblastoid cell line (C1R) expressing the class II haplotype HLA-DR12/DQ7/DP4. We have identified 71350 unique naturally processed peptides presented collectively by HLA-DR12, HLA-DQ7, or HLA-DP4. The resulting "haplodome" is complemented by the cellular proteome defined by standard LC-MS/MS approaches. This large dataset has shed light on properties of these class II ligands especially the preference for membrane and extracellular source proteins. Our data also provides insights into the co-evolution of these conserved haplotypes of closely linked and co-inherited HLA molecules; which together increase sequence coverage of cellular proteins for immune surveillance with minimal overlap between each co-inherited HLA-class II allomorph.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bosco K Ho
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|