1
|
Wang S, Zheng L, Wei X, Qu Z, Du L, Wang S, Zhang N. Amino acid insertion in Bat MHC-I enhances complex stability and augments peptide presentation. Commun Biol 2024; 7:586. [PMID: 38755285 PMCID: PMC11099071 DOI: 10.1038/s42003-024-06292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Bats serve as reservoirs for numerous zoonotic viruses, yet they typically remain asymptomatic owing to their unique immune system. Of particular significance is the MHC-I in bats, which plays crucial role in anti-viral response and exhibits polymorphic amino acid (AA) insertions. This study demonstrated that both 5AA and 3AA insertions enhance the thermal stability of the bat MHC-I complex and enrich the diversity of bound peptides in terms of quantity and length distribution, by stabilizing the 310 helix, a region prone to conformational changes during peptide loading. However, the mismatched insertion could diminish the stability of bat pMHC-I. We proposed that a suitable insertion may help bat MHC-I adapt to high body temperatures during flight while enhancing antiviral responses. Moreover, this site-specific insertions may represent a strategy of evolutionary adaptation of MHC-I molecules to fluctuations in body temperature, as similar insertions have been found in other lower vertebrates.
Collapse
Affiliation(s)
- Suqiu Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Liangzhen Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, PR China
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, PR China
| | - Zehui Qu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
| | - Liubao Du
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Philippon C, Tao S, Clement D, Haroun-Izquierdo A, Kichula KM, Netskar H, Brandt L, Oei VS, Kanaya M, Lanuza PM, Schaffer M, Goodridge JP, Horowitz A, Zhu F, Hammer Q, Sohlberg E, Majhi RK, Kveberg L, Önfelt B, Norman PJ, Malmberg KJ. Allelic variation of KIR and HLA tunes the cytolytic payload and determines functional hierarchy of NK cell repertoires. Blood Adv 2023; 7:4492-4504. [PMID: 37327114 PMCID: PMC10440473 DOI: 10.1182/bloodadvances.2023009827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023] Open
Abstract
The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.
Collapse
Affiliation(s)
- Camille Philippon
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Sudan Tao
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dennis Clement
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Alvaro Haroun-Izquierdo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katherine M. Kichula
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Herman Netskar
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Ludwig Brandt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vincent Sheng Oei
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Minoru Kanaya
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Pilar Maria Lanuza
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Amir Horowitz
- Department of Oncological Sciences, The Marc and Jennifer Lipshultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Quirin Hammer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ebba Sohlberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rakesh Kumar Majhi
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Lise Kveberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul J. Norman
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Zhao X, Lin M, Huang X. Current status and future perspective of natural killer cell therapy for cancer. MEDICAL REVIEW (2021) 2023; 3:305-320. [PMID: 38235405 PMCID: PMC10790210 DOI: 10.1515/mr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 01/19/2024]
Abstract
Natural killer (NK) cells possess innate abilities to effectively eliminate cancer cells. However, because of difficulties of proliferation and easy to be induced dysfunction in the setting of cancer post NK cell therapy, the curative effect of NK cell infusion has been constrained and not been widely applicable in clinical practice. The rapid development of biotechnology has promoted the development of NK cell therapy for cancer treatment. In this review, we will provide a comprehensive analysis of the current status and future prospects of NK cell therapy for cancer, focusing on the biological characteristics of NK cells, as well as strategies to enhance their targeting capabilities and overcome tumor immune suppression within the microenvironment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Minghao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
5
|
Improved Antitumor Effect of NK Cells Activated by Neutrophils in a Bone Marrow Transplant Model. Mediators Inflamm 2023; 2023:6316581. [PMID: 36762286 PMCID: PMC9904906 DOI: 10.1155/2023/6316581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The licensing process mediated by inhibitory receptors of the Ly49 C-type lectin superfamily that recognizes self-major histocompatibility complex (MHC) class I in mice is essential for the proper antitumor function of natural killer (NK) cells. Several models for NK cell licensing can be exploited for adoptive immunotherapy for cancer. However, the appropriate adoptive transfer setting to induce efficient graft versus tumor/leukemia effects remains elusive, especially after hematopoietic stem cell transplantation (HSCT). In our previous experiment, we showed that intraperitoneal neutrophil administration with their corresponding NK receptor ligand-activated NK cells using congenic mice without HSCT. In this experiment, we demonstrate enhanced antitumor effects of licensed NK cells induced by weekly intraperitoneal injections of irradiated neutrophil-enriched peripheral blood mononuclear cells (PBMNCs) in recipient mice bearing lymphoma. Bone marrow transplantation was performed using BALB/c mice (H-2d) as the recipient and B10 mice (H-2b) as the donor. The tumor was A20, a BALB/c-derived lymphoma cell line, which was injected subcutaneously into the recipient at the same time as the HSCT. Acute graft versus host disease was not exacerbated in this murine MHC class I mismatched HSCT setting. The intraperitoneal injection of PBMNCs activated a transient licensing of NK subsets expressed Ly49G2, its corresponding NK receptor ligand to H-2d, and reduced A20 tumor growth in the recipient after HSCT. Pathological examination revealed that increased donor-oriented NK1.1+NK cells migrated into the recipient tumors, depending on neutrophil counts in the administered PBMNCs. Collectively, our data reveal a pivotal role of neutrophils in promoting NK cell effector functions and adoptive immunotherapy for cancer.
Collapse
|
6
|
Zuo W, Yu XX, Liu XF, Chang YJ, Wang Y, Zhang XH, Xu LP, Liu KY, Zhao XS, Huang XJ, Zhao XY. The Interaction of HLA-C1/KIR2DL2/L3 Promoted KIR2DL2/L3 Single-Positive/NKG2C-Positive Natural Killer Cell Reconstitution, Raising the Incidence of aGVHD after Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:814334. [PMID: 35572602 PMCID: PMC9101514 DOI: 10.3389/fimmu.2022.814334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
NKG2C+ natural killer (NK) cell plays a vital role in CMV infection control after hematopoietic stem cell transplantation (HSCT). However, the modulation on NKG2C+ NK cell reconstitution is still unclear. NK cell education is affected by the interactions of HLA-I/killer immunoglobulin receptor (KIR). Our aim is to figure out which HLA-I/KIR interaction plays a dominant role in NKG2C+ NK education. Based on allogeneic haploidentical HSCT, we investigated the expansion and function of single KIR positive NKG2C+ NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after HSCT. KIR2DL2/L3 single-positive/NKG2C+ cells were significantly expanded compared with KIR2DL1 or KIR3DL1 single-positive/NKG2C+ cells when donors and recipients were both HLA-C1/C1 or HLA-C1C1BW4 (p < 0.05), with higher NKp30 expression (p < 0.05). Moreover, the proportion of single KIR positive NK cells increased in both NKG2C+/NKG2A- NK cells and conventional NKG2C-/NKG2A- NK cells over time. We also observed that increased proportion of KIR2DL2/L3 single-positive/NKG2C+ NK cells correlated with higher incidence of acute graft-versus-host disease (aGVHD). Our study allows a better understanding of HLA-I/KIR interaction in the NKG2C+ NK cell education after HSCT.
Collapse
|