1
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
2
|
Matellan C, Kennedy C, Santiago-Vela MI, Hochegger J, Ní Chathail MB, Wu A, Shannon C, Roche HM, Aceves SS, Godson C, Manresa MC. The TNFSF12/TWEAK Modulates Colonic Inflammatory Fibroblast Differentiation and Promotes Fibroblast-Monocyte Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1958-1970. [PMID: 38700420 PMCID: PMC11149899 DOI: 10.4049/jimmunol.2300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Fibroblasts acquire a proinflammatory phenotype in inflammatory bowel disease, but the factors driving this process and how fibroblasts contribute to mucosal immune responses are incompletely understood. TNF superfamily member 12 (TNFSF12, or TNF-like weak inducer of apoptosis [TWEAK]) has gained interest as a mediator of chronic inflammation. In this study, we explore its role as a driver of inflammatory responses in fibroblasts and its contribution to fibroblast-monocyte interaction using human primary colonic fibroblasts, THP-1 and primary monocytes. Recombinant human TWEAK induced the expression of cytokines, chemokines, and immune receptors in primary colonic fibroblasts. The TWEAK upregulated transcriptome shared 29% homology with a previously published transcriptional profile of inflammatory fibroblasts from ulcerative colitis. TWEAK elevated surface expression of activated fibroblast markers and adhesion molecules (podoplanin [PDPN], ICAM-1, and VCAM-1) and secretion of IL-6, CCL2, and CXCL10. In coculture, fibroblasts induced monocyte adhesion and secretion of CXCL1 and IL-8, and they promoted a CD14high/ICAM-1high phenotype in THP-1 cells, which was enhanced when fibroblasts were prestimulated with TWEAK. Primary monocytes in coculture with TWEAK-treated fibroblasts had altered surface expression of CD16 and triggering receptor expressed on myeloid cells-1 (TREM-1) as well as increased CXCL1 and CXCL10 secretion. Conversely, inhibition of the noncanonical NF-κB pathway on colonic fibroblasts with a NF-κB-inducing kinase small molecule inhibitor impaired their ability to induce a CD14high phenotype on monocytes. Our results indicate that TWEAK promotes an inflammatory fibroblast-monocyte crosstalk that may be amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Carlos Matellan
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, Conway Institute of Biomolecular and biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Ciarán Kennedy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, Conway Institute of Biomolecular and biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- Diabetes Complications Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Miren Itxaso Santiago-Vela
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Johanna Hochegger
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Méabh B. Ní Chathail
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Amanda Wu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Christopher Shannon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, Conway Institute of Biomolecular and biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M. Roche
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
- Institute for Global Food Security, Queen’s University Belfast, Belfast, U.K
| | - Seema S. Aceves
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| | - Catherine Godson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, Conway Institute of Biomolecular and biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- Diabetes Complications Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Mario C. Manresa
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
4
|
Menard-Katcher C, Aceves S. Pathophysiology and Clinical Impact of Esophageal Remodeling and Fibrosis in Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2024; 44:129-143. [PMID: 38575213 DOI: 10.1016/j.iac.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Most of the major clinical signs and consequences of eosinophilic esophagitis seem to be related to tissue remodeling. Important data on remodeling activity in patients with eosinophilic esophagitis are provided by a range of current and new biologic markers and diagnostics. To completely clarify the possible advantages and restrictions of therapeutic approaches, clinical studies should take into consideration the existence and reversibility of esophageal remodeling. The degree of mucosal or submucosal disease activity may not be reflected by epithelial eosinophilic inflammation, which is used to define one criterion of disease activity".
Collapse
Affiliation(s)
- Calies Menard-Katcher
- Departments of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Childrens Hospital Colorado, Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA.
| | - Seema Aceves
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of California, Biomedical Research Facility 2, 4A17, 3147 Biomedical Sciences Way, La Jolla, CA, USA
| |
Collapse
|
5
|
Guo Y, Zhou Q, Wei M, Fan J, Huang H. Association of TNFRSF19 with a TNF family-based prognostic model and subtypes in gliomas using machine learning. Heliyon 2024; 10:e28445. [PMID: 38560169 PMCID: PMC10979244 DOI: 10.1016/j.heliyon.2024.e28445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose TNF family members (TFMs) play a crucial role in different types of cancers, with TNF Receptor Superfamily Member 19 (TNFRSF19) standing out as a particularly important member in this category. Further research is necessary to investigate the potential impact of TFMs on prognosis prediction and to elucidate the function and potential therapeutic targets linked to TNFRSF19 expression in gliomas. Methods Three databases provided the data on gene expression and clinical information. Fourteen prognostic members were found through univariate Cox analysis and subsequently utilized to construct TFMs-based model in LASSO and multivariate Cox analyses. TFMs-based subtypes based on the expression profile were identified using an unsupervised clustering method. Machine learning algorithm identified key genes linked to prognostic model and subtype. A sequence of immune infiltrations was evaluated using the ssGSEA and ESTIMATE algorithms. Immunohistochemistry was used to examine the patterns of expression and the clinical significance of TNFRSF19. Results Our development of a prognostic model and subtypes based on the TNF family was successful, resulting in accurate predictions of prognosis. The findings indicate that TNFRSF19 exhibited strong performance. Upregulation of TNFRSF19 was correlated with malignant phenotypes and poor prognosis, which was confirmed through immunohistochemistry. TNFRSF19 played a role in reshaping the immunosuppressive microenvironment in gliomas, and multiple drug-targeted TNFRSF19 molecules were identified. Conclusions The TMF-based prognostic model and subtype can facilitate treatment decisions for glioma. TNFRSF19 is an outstanding representative of a predictor of prognosis and immunotherapy effect in gliomas.
Collapse
Affiliation(s)
- Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Wei
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianfeng Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - He Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Kleuskens MTA, Haasnoot ML, Garssen J, Bredenoord AJ, van Esch BCAM, Redegeld FA. Transcriptomic profiling of the acute mucosal response to local food injections in adults with eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:780-792. [PMID: 37972740 DOI: 10.1016/j.jaci.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.
Collapse
Affiliation(s)
- Mirelle T A Kleuskens
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria L Haasnoot
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands.
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Imran KM, Gannon J, Morrison HA, Tupik JD, Tintera B, Nagai-Singer MA, Ivester H, Madanick JM, Hendricks-Wenger A, Uh K, Luyimbazi DT, Edwards M, Coutermarsh-Ott S, Eden K, Byron C, Clark-Deener S, Lee K, Vlaisavljevich E, Allen IC. Successful In Situ Targeting of Pancreatic Tumors in a Novel Orthotopic Porcine Model Using Histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2361-2370. [PMID: 37596154 PMCID: PMC10529075 DOI: 10.1016/j.ultrasmedbio.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE New therapeutic strategies and paradigms are direly needed to treat pancreatic cancer. The absence of a suitable pre-clinical animal model of pancreatic cancer is a major limitation to biomedical device and therapeutic development. Traditionally, pigs have proven to be ideal models, especially in the context of designing human-sized instruments, perfecting surgical techniques and optimizing clinical procedures for use in humans. However, pig studies have typically focused on healthy tissue assessments and are limited to general safety evaluations because of the inability to effectively model human tumors. METHODS Here, we establish an orthotopic porcine model of human pancreatic cancer using RAG2/IL2RG double-knockout immunocompromised pigs and treat the tumors ex vivo and in vivo with histotripsy. RESULTS Using these animals, we describe the successful engraftment of Panc-1 human pancreatic cancer cell line tumors and characterize their development. To illustrate the utility of these animals for therapeutic development, we determine for the first time, the successful targeting of in situ pancreatic tumors using histotripsy. Treatment with histotripsy resulted in partial ablation in vivo and reduction in collagen content in both in vivo tumor in pig pancreas and ex vivo patient tumor. CONCLUSION This study presents a first step toward establishing histotripsy as a non-invasive treatment method for pancreatic cancer and exposes some of the challenges of ultrasound guidance for histotripsy ablation in the pancreas. Simultaneously, we introduce a highly robust model of pancreatic cancer in a large mammal model that could be used to evaluate a variety biomedical devices and therapeutic strategies.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Hannah Ivester
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Justin Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Kyungjun Uh
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - David T Luyimbazi
- Department of Surgery, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Christopher Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Wu Y, Zhan S, Chen L, Sun M, Li M, Mou X, Zhang Z, Xu L, Xu Y. TNFSF14/LIGHT promotes cardiac fibrosis and atrial fibrillation vulnerability via PI3Kγ/SGK1 pathway-dependent M2 macrophage polarisation. J Transl Med 2023; 21:544. [PMID: 37580750 PMCID: PMC10424430 DOI: 10.1186/s12967-023-04381-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-β1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Lian Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Mingrui Sun
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuanting Mou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Zhen Zhang
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
9
|
Imran KM, Tintera B, Morrison HA, Tupik JD, Nagai-Singer MA, Ivester H, Council-Troche M, Edwards M, Coutermarsh-Ott S, Byron C, Clark-Deener S, Uh K, Lee K, Boulos P, Rowe C, Coviello C, Allen IC. Improved Therapeutic Delivery Targeting Clinically Relevant Orthotopic Human Pancreatic Tumors Engrafted in Immunocompromised Pigs Using Ultrasound-Induced Cavitation: A Pilot Study. Pharmaceutics 2023; 15:1585. [PMID: 37376034 PMCID: PMC10302458 DOI: 10.3390/pharmaceutics15061585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic tumors can be resistant to drug penetration due to high interstitial fluid pressure, dense stroma, and disarrayed vasculature. Ultrasound-induced cavitation is an emerging technology that may overcome many of these limitations. Low-intensity ultrasound, coupled with co-administered cavitation nuclei consisting of gas-stabilizing sub-micron scale SonoTran Particles, is effective at increasing therapeutic antibody delivery to xenograft flank tumors in mouse models. Here, we sought to evaluate the effectiveness of this approach in situ using a large animal model that mimics human pancreatic cancer patients. Immunocompromised pigs were surgically engrafted with human Panc-1 pancreatic ductal adenocarcinoma (PDAC) tumors in targeted regions of the pancreas. These tumors were found to recapitulate many features of human PDAC tumors. Animals were intravenously injected with the common cancer therapeutics Cetuximab, gemcitabine, and paclitaxel, followed by infusion with SonoTran Particles. Select tumors in each animal were targeted with focused ultrasound to induce cavitation. Cavitation increased the intra-tumor concentrations of Cetuximab, gemcitabine, and paclitaxel by 477%, 148%, and 193%, respectively, compared to tumors that were not targeted with ultrasound in the same animals. Together, these data show that ultrasound-mediated cavitation, when delivered in combination with gas-entrapping particles, improves therapeutic delivery in pancreatic tumors under clinically relevant conditions.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Benjamin Tintera
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Hannah Ivester
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24061, USA
| | - McAlister Council-Troche
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Christopher Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Kyungjun Uh
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Paul Boulos
- OxSonics Therapeutics, Oxford Science Park, Oxford OX4 4GA, UK
| | - Cliff Rowe
- OxSonics Therapeutics, Oxford Science Park, Oxford OX4 4GA, UK
| | | | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Maskey AR, Wang ZZ, Chen X, Dunkin D, Yang N, Soffer G, Yuan Q, Li XM. Computational analysis to define efficacy & molecular mechanisms of 7, 4'- Dihydroxyflavone on eosinophilic esophagitis: Ex-vivo validation in human esophagus biopsies. Front Immunol 2022; 13:1015437. [PMID: 36591238 PMCID: PMC9797535 DOI: 10.3389/fimmu.2022.1015437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Eosinophilic Esophagitis (EoE) is a chronic condition characterized by eosinophilic inflammation of the esophagus which leads to esophageal dysfunction with common symptoms including vomiting, feeding difficulty, dysphagia, abdominal pain. Current main treatment options of EoE include dietary elimination and swallowed steroids. Diet elimination approach could lead to identifying the trigger food(s), but it often requires repeated upper endoscopy with general anesthesia and potentially could negatively affect nutrition intake and growth of the child and individuals' quality of life. Although the swallowed steroid treatment of effective, the EoE will universally recur after discontinuation of the treatment. Digestive Tea formula (DTF) has been used by the Traditional Chinese Medicine (TCM) practice to improve GI symptoms in EoE patients, including abdominal pain, GE reflux, and abnormal bowel movement. Previously, a flavonoid small molecule compound 7, 4 dihydroxy flavone (DHF) from Glycyrrhiza uralensis in DTF inhibited eotaxin, Th2 cytokine and IgE production in vitro and in vivo. Method This study comprehensively evaluates the potential therapeutic and immunological mechanisms underlying DHF improvement of symptoms related to EoE using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analyses, in silico molecular docking and dynamic simulation followed by ex-vivo target validation by qRT-PCR using cultured human esophagus biopsy specimen with or without DHF from patients with EoE. Results Computational analyses defined 29 common targets of DHF on EoE, among which TNF-α, IL-6, IL1β, MAPK1, MAPK3 and AKT1 were most important. Docking analysis and dynamic simulation revealed that DHF directly binds TNF-α with a free binding energy of -7.7 kcal/mol with greater stability and flexibility. Subsequently, in the human esophagus biopsy culture system, significant reduction in levels of TNF-α, IL-6, IL-8 and IL1-β was found in the supernatant of biopsy sample cultured with DHF. Furthermore, the gene expression profile showed significant reduction in levels of TNF-α, IL1-β, IL-6, CCND and MAPK1 in the esophagus biopsy sample cultured with DHF. Discussion Taken together, the current study provides us an insight into the molecular mechanisms underlying multi-targeted benefits of DHF in the treatment of EoE and paves the way for facilitating more effective EoE therapies.
Collapse
Affiliation(s)
- Anish R. Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Chen
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Dunkin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nan Yang
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States,General Nutraceutical Technology, Elmsford, NY, United States
| | - Gary Soffer
- Department of Allergy and Immunology, Yale University, New Haven, CT, United States
| | - Qian Yuan
- Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States,Department of Otolaryngology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States,*Correspondence: Xiu-Min Li,
| |
Collapse
|
11
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|