1
|
Liu X, Wang W, Zhao H, Wang Y, Jiang L, Zhang E, Feng Y, Wang X, Qu J, Yang J, Li Z. Transcriptome profiling of triploid Crassostrea gigas gills indicates the host immune mechanism against bacterial infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101392. [PMID: 39647257 DOI: 10.1016/j.cbd.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
As an important member of global aquaculture, oysters (Crassostrea gigas) have significant economic value. With the development of commercial aquaculture, the frequent occurrence of diseases caused by Vibrio alginolyticus has become a hindrance to high-density aquaculture. Gill tissue, as an important component of immune system of the oysters, plays the key point in the face of invasion by foreign substances. Compared to the diploid oyster, the triploid oyster presents a higher growth rate and lower growth investment, making it a more ideal model for studying oyster immune defense. In this study, triploid oysters were as the research subject, and gill tissues attacked by V. alginolyticus were sequenced. By analyzing samples from different time points, 1746 DEGs were obtained. The KEGG and GO functional enrichment analysis showed that gill tissues mainly participate in immune function through the PIK3-Akt signaling pathway and the MAPK signaling pathway. The protein interaction network revealed three genes (CASP8, CASP9 and PIK3CA) that play core roles in immune defense by analyzing the interaction relationship between genes. Finally, qRT-PCR verified the expression of key genes. This study provides a more effective scientific basis for disease prevention and control of oysters and other bivalve shellfish, and helps to promote the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Haitao Zhao
- Dongying Marine Development Research Institute, Dongying 257091, China
| | - Yongjie Wang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Liming Jiang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Enshuo Zhang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Zan Li
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Liu H, Zhao Y, Du H, Hao P, Tian H, Wang K, Qiu Y, Dong H, Du Q, Tong D, Huang Y. IL-10 upregulates SOCS3 to inhibit type I interferon signaling to promote PoRVA replication in intestinal epithelial cells. Vet Microbiol 2024; 298:110259. [PMID: 39332165 DOI: 10.1016/j.vetmic.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Porcine group A rotavirus (PoRVA) is one of the common enteric viruses causing severe diarrhea in piglets. Although PoRVA infection has been identified to promote IL-10 production, the role of IL-10 during viral infection remains unclear. In this study, we found that elevated IL-10 levels during PoRVA infection promote viral replication by inhibiting type I interferon production and response. IL-10 treatment upregulated the expression of SOCS3 in PoRVA-infected IPEC-J2 cells, which inhibited IFN-I production by preventing the degradation of IκB and nuclear translocation of NF-κB, thereby significantly promoting PoRVA replication. Furthermore, we determined that SOCS3 also inhibited type Ⅰ interferon signaling pathway, which led to a significantly reduced ISGs after IFN-α stimulation. In PoRVA-infected cells, overexpression of SOCS3 significantly inhibits phosphorylation and heterodimerization of STAT1, thereby promoting viral replication. Finally, we demonstrated the effect of IL-10 on PoRVA replication in vivo by murine models of PoRVA infection. PoRVA replication levels were lower in the ileum of IL-10 knockout (IL-10-/-) mice than that in PoRVA-infected wild-type mice, but PoRVA replication levels were higher in the ileum of IFNAR knockout (IFNAR-/-) mice than that in PoRVA-infected wild-type mice. Taken together, our findings provide information to understand the strategies of PoRVA to evade host innate antiviral immunity.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongpan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Shaanxi Animal Husbandry Experimental and Demonstration Center, China
| | - Huimin Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Pengcheng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| |
Collapse
|
3
|
Cheng J, Wang D, Geng M, Zheng Y, Cao Y, Liu S, Zhang J, Yang J, Wei X. Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109975. [PMID: 39427837 DOI: 10.1016/j.fsi.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shurong Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Cao Y, Zhang J, Wang D, Zheng Y, Cheng J, Geng M, Li K, Yang J, Wei X. Granzyme B secreted by T cells is involved in anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109865. [PMID: 39214265 DOI: 10.1016/j.fsi.2024.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Secreted by natural killer cells and cytotoxic T lymphocytes, Granzyme B is involved in regulating the adaptive immune response in vertebrates and plays a pivotal role in resisting virus invasion and removing pathogens. Although it had been extensively studied in mammals, the involvement of Granzyme B in adaptive immune response of early vertebrates remained elusive. In this study, we investigated the Granzyme B in Oreochromis niloticus (OnGrB), found that its function domain was conserved. Additionally, OnGrB was widely expressed in various tissues and could respond to T-cell activation in vitro at the transcriptional level. Furthermore, we prepared the recombinant OnGrB (rOnGrB) as an immunogen to develop a mouse anti-OnGrB monoclonal antibody (mAb). Using this anti-OnGrB mAb as a tool, we explored the expression of OnGrB in the adaptive immune response of tilapia. Our findings revealed that T cell was a significant source of OnGrB production, the expression of OnGrB at the protein level and the proportion of OnGrB + T cells increased after both T cell activation in vitro and infection with Edwardsiella piscicida in vivo. More importantly, our findings also preliminarily illuminated that p65 could regulate the transcriptional activity of OnGrB. These results indicated that OnGrB was involved in the adaptive immunity of tilapia and played a critical role in T cell function in teleost. Our study provided theoretical support and new perspectives for understanding adaptive immunity in teleost.
Collapse
Affiliation(s)
- Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Xie SS, Zhi Y, Shao CM, Zeng BF. Yangyin Huowei mixture alleviates chronic atrophic gastritis by inhibiting the IL-10/JAK1/STAT3 pathway. World J Gastrointest Surg 2024; 16:2296-2307. [PMID: 39087093 PMCID: PMC11287668 DOI: 10.4240/wjgs.v16.i7.2296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The Chinese medicine Yangyin Huowei mixture (YYHWM) exhibits good clinical efficacy in the treatment of chronic atrophic gastritis (CAG), but the mechanisms underlying its activity remain unclear. AIM To investigate the therapeutic effects of YYHWM and its underlying mechanisms in a CAG rat model. METHODS Sprague-Dawley rats were allocated into control, model, vitacoenzyme, and low, medium, and high-dose YYHWM groups. CAG was induced in rats using N-methyl-N'-nitro-N-nitrosoguanidine, ranitidine hydrochloride, hunger and satiety perturbation, and ethanol gavage. Following an 8-wk intervention period, stomach samples were taken, stained, and examined for histopathological changes. ELISA was utilized to quantify serum levels of PG-I, PG-II, G-17, IL-1β, IL-6, and TNF-α. Western blot analysis was performed to evaluate protein expression of IL-10, JAK1, and STAT3. RESULTS The model group showed gastric mucosal layer disruption and inflammatory cell infiltration. Compared with the blank control group, serum levels of PGI, PGII, and G-17 in the model group were significantly reduced (82.41 ± 3.53 vs 38.52 ± 1.71, 23.06 ± 0.96 vs 11.06 ± 0.70, and 493.09 ± 12.17 vs 225.52 ± 17.44, P < 0.01 for all), whereas those of IL-1β, IL-6, and TNF-α were significantly increased (30.15 ± 3.07 vs 80.98 ± 4.47, 69.05 ± 12.72 vs 110.85 ± 6.68, and 209.24 ± 11.62 vs 313.37 ± 36.77, P < 0.01 for all), and the protein levels of IL-10, JAK1, and STAT3 were higher in gastric mucosal tissues (0.47 ± 0.10 vs 1.11 ± 0.09, 0.49 ± 0.05 vs 0.99 ± 0.07, and 0.24 ± 0.05 vs 1.04 ± 0.14, P < 0.01 for all). Compared with the model group, high-dose YYHWM treatment significantly improved the gastric mucosal tissue damage, increased the levels of PGI, PGII, and G-17 (38.52 ± 1.71 vs 50.41 ± 3.53, 11.06 ± 0.70 vs 15.33 ± 1.24, and 225.52 ± 17.44 vs 329.22 ± 29.11, P < 0.01 for all), decreased the levels of IL-1β, IL-6, and TNF-α (80.98 ± 4.47 vs 61.56 ± 4.02, 110.85 ± 6.68 vs 89.20 ± 8.48, and 313.37 ± 36.77 vs 267.30 ± 9.31, P < 0.01 for all), and evidently decreased the protein levels of IL-10 and STAT3 in gastric mucosal tissues (1.11 ± 0.09 vs 0.19 ± 0.07 and 1.04 ± 0.14 vs 0.55 ± 0.09, P < 0.01 for both). CONCLUSION YYHWM reduces the release of inflammatory factors by inhibiting the IL-10/JAK1/STAT3 pathway, alleviating gastric mucosal damage, and enhancing gastric secretory function, thereby ameliorating CAG development and cancer transformation.
Collapse
Affiliation(s)
- Shan-Shan Xie
- Department of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China
| | - Yong Zhi
- Department of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China
| | - Chang-Ming Shao
- Department of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China
| | - Bin-Fang Zeng
- Department of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
6
|
Long J, Zhao W, Xiang Y, Wang Y, Xiang W, Liu X, Jiang M, Song Y, Hu J. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int Immunopharmacol 2024; 133:112065. [PMID: 38608448 DOI: 10.1016/j.intimp.2024.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1β-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1β-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1β induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1β-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1β-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1β-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1β. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1β-induced IL-8 production through this non-transcriptional mechanism.
Collapse
Affiliation(s)
- Jiangwen Long
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wang Zhao
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yangen Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yufei Wang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Xueting Liu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Manli Jiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Jinyue Hu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
7
|
Zhang J, Wei X, Zhang Q, Jiao X, Li K, Geng M, Cao Y, Wang D, Cheng J, Yang J. Fish Uses CTLA-4 Immune Checkpoint to Suppress mTORC1-Controlled T-Cell Glycolysis and Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1113-1128. [PMID: 38363204 DOI: 10.4049/jimmunol.2300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Yang H, Xiao T, Deng Y, Ding C, Zhang M, Li J, Lv Z. JunD functions as a transcription factor of IL-10 to regulate bacterial infectious inflammation in grass carp (Ctenopharyngodon idella). Int J Biol Macromol 2024; 258:129045. [PMID: 38159700 DOI: 10.1016/j.ijbiomac.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
IL-10 is a key anti-inflammatory mediator ensuring the protection of a host from excessive inflammation in response to pathogen infections, whose transcription or expression levels are tightly linked to the onset and progression of infectious diseases. An AP-1 family member called CiJunD was shown to be a transcription factor of IL-10 in grass carp (Ctenopharyngodon idella) in the current study. CiJunD protein harbored the conserved Jun and bZIP domains. Mutant experiments demonstrated that CiJunD bound to three specific sites on IL-10 promoter, i.e., 5'-ATTATTCATA-3', 5'-AGATGAGACATCT-3', and 5'-ATTATTCATC-3', mainly relying on the bZIP domain, and initiated IL-10 transcription. Expression data from the grass carp spleen infected by Aeromonas hydrophila and lipopolysaccharide (LPS) challenged spleen leukocytes indicated that the expressions of CiJunD and IL-10 were positively correlated, while the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, IFN-γ, and TNF-α, showed an overall downward trend when CiJunD and IL-10 peaked. The ability of CiJunD to down-regulate the production of pro-inflammatory cytokines and up-regulate the expression of IL-10, both with and without LPS stimulation, was confirmed by overexpression experiments. Meanwhile, the subcellular fractionation assay revealed that the nuclear translocation of CiJunD was significantly enhanced after the LPS challenge. Moreover, in vivo administration of grass carp with Oxamflatin, a potent agonist of JunD activity, could promote IL-10 but suppress the expression of pro-inflammatory cytokines. Intriguingly, tissue inflammation lesions and the survival rates of grass carp infected with A. hydrophila were also significantly improved by Oxamflatin administration. This work sheds light on the regulation mechanism by JunD of IL-10 expression and bacterial infectious inflammation for the first time, and it may present a viable method for preventing infectious diseases in fish by regulating IL-10 expression and inflammatory response.
Collapse
Affiliation(s)
- Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Ding C, Xiao T, Deng Y, Yang H, Xu B, Li J, Lv Z. The Teleost CXCL13-CXCR5 Axis Induces Inflammatory Cytokine Expression through the Akt-NF-κB, p38-AP-1, and p38-NF-κB Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:317-334. [PMID: 38054894 DOI: 10.4049/jimmunol.2300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1β, TNF-α, IL-10 and TGF-β1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.
Collapse
Affiliation(s)
- Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Baohong Xu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Xu C, Wu P, Gao Q, Cai C, Fan K, Zhou J, Lei L, Chen L. Molecular characterization, expression analysis and subcellular location of the members of STAT family from spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109241. [PMID: 37992914 DOI: 10.1016/j.fsi.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Li K, Wei X, Yang J. Cytokine networks that suppress fish cellular immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104769. [PMID: 37423553 DOI: 10.1016/j.dci.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Immunosuppressive cytokines are a class of cytokines produced by immune cells and certain non-immune cells that have a suppressive effect on immune function. Currently known immunosuppressive cytokines include interleukin (IL)-10, transforming growth factor beta (TGF-β), IL-35, and IL-37. Although latest sequencing technologies have facilitated the identification of immunosuppressive cytokines in fish, IL-10 and TGF-β were the most well-known ones that have been widely studied and received continuous attention. Fish IL-10 and TGF-β have been identified as anti-inflammatory and immunosuppressive factors, acting on both innate and adaptive immune systems. However, unlike mammals, teleost fish underwent a third or fourth whole-genome duplication event, which significantly expanded the gene family associated with the cytokine signaling pathway, making the function and mechanism of these molecules need further investigation. In this review, we summarize the advances of studies on fish immunosuppressive cytokines IL-10 and TGF-β since their identification, mainly focusing on production, signaling transduction, and effects on the immunological function. This review aims to expand the understanding of the immunosuppressive cytokine network in fish.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Gao H, Li K, Ai K, Geng M, Cao Y, Wang D, Yang J, Wei X. Interleukin-12 induces IFN-γ secretion and STAT signaling implying its potential regulation of Th1 cell response in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108974. [PMID: 37482205 DOI: 10.1016/j.fsi.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Liu Z, Wang L, Gao P, Yu Y, Zhang Y, Fotin A, Wang Q, Xu Z, Wei X, Fotina T, Ma J. Salmonella Pullorum effector SteE regulates Th1/Th2 cytokine expression by triggering the STAT3/SOCS3 pathway that suppresses NF-κB activation. Vet Microbiol 2023; 284:109817. [PMID: 37348209 DOI: 10.1016/j.vetmic.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Salmonella enterica serovar Pullorum (S. Pullorum) can regulate host immunity via special effectors that promote persistent infection and its intracellular survival. SteE as an anti-inflammatory effector is involved in the systemic infection of Salmonella in host macrophages. Macrophage activation can indirectly reflect the immune regulatory function of T helper type 1 (Th1)/T helper type 2 (Th2) cytokines. However, information concerning the regulation of Th1/Th2 cytokine expression by steE in S. Pullorum infection is limited. This study evaluates the effects of steE on the Th1/Th2 balance, STAT3/SOCS3 pathway, and NF-κB P65 activation in S. Pullorum-infected HD-11 cells and in chicken models. We demonstrated that steE diminished the expression of Th1-related cytokines (IFN-γ and IL-12) and promoted the expression of Th2-related cytokines (IL-4 and IL-10) in HD-11 cells and chicken models of S. Pullorum infection. SOCS3 silencing suppressed the function of steE in HD-11 cells and led to the imbalance of Th1/Th2-related cytokines. SteE promoted SOCS3 expression by activating STAT3 in HD-11 cells. Moreover, steE inhibited NF-κB P65 expression and blocked its translocation to the nucleus by promoting SOCS3 expression. Our results illustrated that steE regulated the expression of Th1/Th2 cytokines via modulation of the STAT3/SOCS3 and NF-κB axis, which might be associated with Th1/Th2 cell differentiation and could, therefore, be a novel therapeutic strategy against salmonellosis.
Collapse
Affiliation(s)
- Zhike Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Anatoliy Fotin
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tetiana Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine.
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
14
|
Li K, Wei X, Li K, Zhang Q, Zhang J, Wang D, Yang J. Dietary restriction to optimize T cell immunity is an ancient survival strategy conserved in vertebrate evolution. Cell Mol Life Sci 2023; 80:219. [PMID: 37470873 PMCID: PMC11071854 DOI: 10.1007/s00018-023-04865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Recent advances highlight a key role of transient fasting in optimizing immunity of human and mouse. However, it remains unknown whether this strategy is independently acquired by mammals during evolution or instead represents gradually evolved functions common to vertebrates. Using a tilapia model, we report that T cells are the main executors of the response of the immune system to fasting and that dietary restriction bidirectionally modulates T cell immunity. Long-term fasting impaired T cell immunity by inducing intense autophagy, apoptosis, and aberrant inflammation. However, transient dietary restriction triggered moderate autophagy to optimize T cell response by maintaining homeostasis, alleviating inflammation and tissue damage, as well as enhancing T cell activation, proliferation and function. Furthermore, AMPK is the central hub linking fasting and autophagy-controlled T cell immunity in tilapia. Our findings demonstrate that dietary restriction to optimize immunity is an ancient strategy conserved in vertebrate evolution, providing novel perspectives for understanding the adaptive evolution of T cell response.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|