1
|
Sugawara S, Lee E, Craemer MA, Pruitt A, Balachandran H, Gressens SB, Kroll K, Manickam C, Li Y, Jost S, Woolley G, Reeves RK. Knockdowns of CD3zeta Chain in Primary NK Cells Illustrate Modulation of Antibody-Dependent Cellular Cytotoxicity Against Human Immunodeficiency Virus-1. AIDS Res Hum Retroviruses 2024; 40:631-636. [PMID: 39041622 PMCID: PMC11631794 DOI: 10.1089/aid.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Multifaceted natural killer (NK) cell activities are indispensable for controlling human immunodeficiency virus (HIV)-1 transmission and pathogenesis. Among the diverse functions of NK cells, antibody-dependent cellular cytotoxicity (ADCC) has been shown to predict better HIV-1 protection. ADCC is initiated by the engagement of an Fc γ receptor CD16 with an Fc portion of the antibody, leading to phosphorylation of the CD3 ζ chain (CD3ζ) and Fc receptor γ chain (FcRγ) as well as downstream signaling activation. Though CD3ζ and FcRγ were thought to have overlapping roles in NK cell ADCC, several groups have reported that CD3ζ-mediated signals trigger a more robust ADCC. However, few studies have illustrated the direct contribution of CD3ζ in HIV-1-specific ADCC. To further understand the roles played by CD3ζ in HIV-1-specific ADCC, we developed a CD3ζ knockdown system in primary human NK cells. We observed that HIV-1-specific ADCC was inhibited by CD3ζ perturbation. In summary, we demonstrated that CD3ζ is important for eliciting HIV-1-specific ADCC, and this dynamic can be utilized for NK cell immunotherapeutics against HIV-1 infection and other diseases.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Melissa A. Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Alayna Pruitt
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Simon B. Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Center for Biomolecular Therapeutics & Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
3
|
Millan AJ, Allain V, Nayak I, Aguilar OA, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Eyquem J, Das J, Lanier LL. Spleen Tyrosine Kinase (SYK) negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602676. [PMID: 39026749 PMCID: PMC11257556 DOI: 10.1101/2024.07.09.602676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction ofCa 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robustCa + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-inducedCa 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J. Millan
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Gabriella Ureno
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Allison Grace Rothrock
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Gao F, Mora MC, Constantinides M, Coenon L, Multrier C, Vaillant L, Zhang T, Villalba M. g-NK cells from umbilical cord blood are phenotypically and functionally different than g-NK cells from peripheral blood. Oncoimmunology 2023; 12:2283353. [PMID: 38126036 PMCID: PMC10732642 DOI: 10.1080/2162402x.2023.2283353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
FcRγ-deficient natural killer (NK) cells, designated as g-NK cells, exhibit enhanced antibody-dependent cellular cytotoxicity (ADCC) capacity and increased IFN-γ and TNF-α production, rendering them promising for antiviral and antitumor responses. g-NK cells from peripheral blood (PB) are often associated with prior human cytomegalovirus (HCMV) infection. However, the prevalence, phenotype, and function of g-NK cells in umbilical cord blood (UCB-g-NK) remain unclear. Here, we demonstrate significant phenotypical differences between UCB-g-NK and PB-g-NK cells. Unlike PB-g-NK cells, UCB-g-NK cells did not show heightened cytokine production upon CD16 engagement, in contrast to the conventional NK (c-NK) cell counterparts. Interestingly, following in vitro activation, UCB-g-NK cells also exhibited elevated levels of IFN-γ production, particularly when co-cultured with HCMV and plasma from g-NK+ adults. Furthermore, g-NK+ plasma from PB even facilitated the in vitro expansion of UCB-g-NK cells. These findings underscore the phenotypic and functional heterogeneity of g-NK cells based on their origin and demonstrate that components within g-NK+ plasma may directly contribute to the acquisition of an adult phenotype by the "immature" UCB-g-NK cells.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | | | | | - Loïs Coenon
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Loïc Vaillant
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martin Villalba
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, INSERM, CHRU de Montpellier, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|