1
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
2
|
Abe J, Takeda Y, Kikuma T, Kizuka Y, Kajiura H, Kajihara Y, Ito Y. Squaryl group-modified UDP analogs as inhibitors of the endoplasmic reticulum-resident folding sensor enzyme UGGT. Chem Commun (Camb) 2023; 59:2803-2806. [PMID: 36790024 DOI: 10.1039/d2cc06634c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UDP-Glc:glycoprotein glucosyltransferase (UGGT) has a central role to retain quality control of correctly folded N-glycoprotein in the endoplasmic reticulum (ER). A selective and potent inhibitor against UGGT could lead to elucidation of UGGT-related events, but such a molecule has not been identified so far. Examples of small molecules with UGGT inhibitory activity are scarce. Here, we report squaryl group-modified UDP analogs as a promising UGGT inhibitor. Among these, the compound possessing a 2'-amino group of the uridine moiety and hydroxyethyl-substituted squaramide exhibited the highest potency, suggesting its relevance as a molecule for further optimization.
Collapse
Affiliation(s)
- Junpei Abe
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yoichi Takeda
- College of Life Sciences, Ritsumeikan University, Kusastu, 525-8577, Japan
| | - Takashi Kikuma
- College of Life Sciences, Ritsumeikan University, Kusastu, 525-8577, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, 565-0871, Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| |
Collapse
|
3
|
Pedram K, Laqtom NN, Shon DJ, Di Spiezio A, Riley NM, Saftig P, Abu-Remaileh M, Bertozzi CR. Lysosomal cathepsin D mediates endogenous mucin glycodomain catabolism in mammals. Proc Natl Acad Sci U S A 2022; 119:e2117105119. [PMID: 36122205 PMCID: PMC9522329 DOI: 10.1073/pnas.2117105119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nouf N. Laqtom
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - D. Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | | | - Nicholas M. Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany D-24098
| | - Monther Abu-Remaileh
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
4
|
DiLillo AM, Chan KK, Sun XL, Ao G. Glycopolymer-Wrapped Carbon Nanotubes Show Distinct Interaction of Carbohydrates With Lectins. Front Chem 2022; 10:852988. [PMID: 35308788 PMCID: PMC8927622 DOI: 10.3389/fchem.2022.852988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glyconanomaterials with unique nanoscale property and carbohydrate functionality show vast potential in biological and biomedical applications. We investigated the interactions of noncovalent complexes of single-wall carbon nanotubes that are wrapped by disaccharide lactose-containing glycopolymers with the specific carbohydrate-binding proteins. The terminal galactose (Gal) of glycopolymers binds to the specific lectin as expected. Interestingly, an increased aggregation of nanotubes was also observed when interacting with a glucose (Glc) specific lectin, likely due to the removal of Glc groups from the surface of nanotubes resulting from the potential binding of the lectin to the Glc in the glycopolymers. This result indicates that the wrapping conformation of glycopolymers on the surface of nanotubes potentially allows improved accessibility of the Glc for specific lectins. Furthermore, it shows that the interaction between Glc groups in the glycopolymers and nanotubes play a key role in stabilizing the nanocomplexes. Overall, our results demonstrate that nanostructures can enable conformation-dependent interactions of glycopolymers and proteins and can potentially lead to the creation of versatile optical sensors for detecting carbohydrate-protein interactions with enhanced specificity and sensitivity.
Collapse
Affiliation(s)
- Ana M. DiLillo
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
| | - Ka Keung Chan
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
5
|
Cantwell MA, Chan KK, Sun XL, Ao G. Carbohydrate- and Chain Length-Controlled Complexation of Carbon Nanotubes by Glycopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9878-9885. [PMID: 32787060 DOI: 10.1021/acs.langmuir.0c01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stable dispersions of single-wall carbon nanotubes (SWCNTs) by biopolymers in an aqueous environment facilitate their potential biological and biomedical applications. In this report, we investigated a small library of precision synthesized glycopolymers with monosaccharide and disaccharide groups for stabilizing SWCNTs via noncovalent complexation in aqueous conditions. Among the glycopolymers tested, disaccharide lactose-containing glycopolymers demonstrate effective stabilization of SWCNTs in water, which strongly depends on carbohydrate density and polymer chain length as well. The introduction of disaccharide lactose potentially makes glycopolymers less flexible as compared to those containing monosaccharide and facilitates the wrapping conformation of polymers on the surface of SWCNTs while preserving intrinsic photoluminescence of nanotubes in the near-infrared region. This work demonstrates the synergistic effects of the identity of carbohydrate pendant groups and polymer chain length of glycopolymers on stabilizing SWCNTs in water, which has not been achieved previously.
Collapse
Affiliation(s)
- Michael A Cantwell
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Ka Keung Chan
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|