1
|
Fukunaga T, Watanabe M, Nakamichi Y, Morita T, Higuchi Y, Maekawa H, Takegawa K. Mechanistic insights into Schizosaccharomyces pombe GT-A family protein Pvg3 in the biosynthesis of pyruvylated β1,3-galactose of N-linked oligosaccharides. J Biosci Bioeng 2023; 135:423-432. [DOI: 10.1016/j.jbiosc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023]
|
2
|
Fukunaga T, Tanaka N, Furumoto T, Nakakita S, Ohashi T, Higuchi Y, Maekawa H, Takegawa K. Substrate specificities of α1,2- and α1,3-galactosyltransferases and characterization of Gmh1p and Otg1p in Schizosaccharomyces pombe. Glycobiology 2021; 31:1037-1045. [PMID: 33909078 DOI: 10.1093/glycob/cwab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, α1,2- and α1,3-linked D-galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases. Although the galactomannans are important for cell-cell communication in S. pombe (e.g., in non-sexual aggregation), the mechanisms underlying galactosylation in cells remain unclear. S. pombe has 10 galactosyltransferase-related genes: seven belonging to glycosyltransferase (GT) family 34 and three belonging GT family 8. Disruption of all 10 α-galactosyltransferases (strain Δ10GalT) has been shown to result in a complete lack of α-Gal residues. Here, we have investigated the function and substrate specificities of galactosyltransferases in S pombe by using strains expressing single α-galactosyltransferases in the Δ10GalT background. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides showed that two GT family 34 α1,2-galactosyltransferases (Gma12p and Gmh6p) and two GT family 8 α1,3-galactosyltransferases (Otg2p and Otg3p) are involved in galactosylation of O-linked oligosaccharide. Moreover, 1H-NMR of N-glycans revealed that three GT family 34 α1,2-galactosyltransferases (Gmh1p, Gmh2p, and Gmh3p) are required for galactosylation of N-linked oligosaccharides. Furthermore, HPLC and lectin-blot analysis revealed that Otg1p showed α1,3-galactosyltransferase activity under conditions of co-expression with Gmh6p, indicating that α-1,2-linked galactose is required for the galactosylation activity of Otg1p in S. pombe. In conclusion, eight galactosyltransferases have been shown to have activity in S. pombe with different substrate specificities. These findings will be useful for genetically tailoring the galactosylation of both N- and O- glycans in fission yeast.
Collapse
Affiliation(s)
- Takamasa Fukunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshio Furumoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Shinichi Nakakita
- Department of Endocrinology; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan; and Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Takao Ohashi
- Faculty of Science and Engineering Department of Life Science, Setsunan University, Osaka, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiromi Maekawa
- Centre for Promotion of International Education and Research, Faculty of Agriculture, Kyushu university, Fukuoka, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|