1
|
Imaizumi Y, Takanuki K, Miyake T, Takemoto M, Hirata K, Hirose M, Oi R, Kobayashi T, Miyoshi K, Aruga R, Yokoyama T, Katagiri S, Matsuura H, Iwasaki K, Kato T, Kaneko MK, Kato Y, Tajiri M, Akashi S, Nureki O, Hizukuri Y, Akiyama Y, Nogi T. Mechanistic insights into intramembrane proteolysis by E. coli site-2 protease homolog RseP. SCIENCE ADVANCES 2022; 8:eabp9011. [PMID: 36001659 PMCID: PMC9401612 DOI: 10.1126/sciadv.abp9011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/01/2022] [Indexed: 05/31/2023]
Abstract
Site-2 proteases are a conserved family of intramembrane proteases that cleave transmembrane substrates to regulate signal transduction and maintain proteostasis. Here, we elucidated crystal structures of inhibitor-bound forms of bacterial site-2 proteases including Escherichia coli RseP. Structure-based chemical modification and cross-linking experiments indicated that the RseP domains surrounding the active center undergo conformational changes to expose the substrate-binding site, suggesting that RseP has a gating mechanism to regulate substrate entry. Furthermore, mutational analysis suggests that a conserved electrostatic linkage between the transmembrane and peripheral membrane-associated domains mediates the conformational changes. In vivo cleavage assays also support that the substrate transmembrane helix is unwound by strand addition to the intramembrane β sheet of RseP and is clamped by a conserved asparagine residue at the active center for efficient cleavage. This mechanism underlying the substrate binding, i.e., unwinding and clamping, appears common across distinct families of intramembrane proteases that cleave transmembrane segments.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazunori Takanuki
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takuya Miyake
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mizuki Takemoto
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Rika Oi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuya Kobayashi
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenichi Miyoshi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rie Aruga
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuhiko Yokoyama
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shizuka Katagiri
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Michiko Tajiri
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Osamu Nureki
- Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Hizukuri
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
2
|
Genome Sequence of the Halophilic Bacterium Kangiella spongicola ATCC BAA-2076
T. Microbiol Resour Announc 2018; 7:MRA00847-18. [PMID: 30533801 PMCID: PMC6211358 DOI: 10.1128/mra.00847-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
The Gram-negative genus Kangiella contains a number of halophilic species that display high levels of iso-branched fatty acids. Kangiella spongicola was isolated from a marine sponge, Chondrilla nucula, from the Florida Keys in the United States. The Gram-negative genus Kangiella contains a number of halophilic species that display high levels of iso-branched fatty acids. Kangiella spongicola was isolated from a marine sponge, Chondrilla nucula, from the Florida Keys in the United States. A genome assembly of 2,825,399 bp with a 44.31% G+C content was generated from strain A79T (=ATCC BAA-2076T).
Collapse
|
3
|
Wang J, Lu Y, Nawaz MZ, Xu J. Comparative Genomics Reveals Evidence of Genome Reduction and High Extracellular Protein Degradation Potential in Kangiella. Front Microbiol 2018; 9:1224. [PMID: 29930545 PMCID: PMC6000758 DOI: 10.3389/fmicb.2018.01224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The genus Kangiella has recently been proposed within the family Kangiellaceae, belonging to order Oceanospirillales. Here, we report the complete genome sequence of a novel strain, Kangiella profundi FT102, which is the only Kangiella species isolated from a deep sea sediment sample. Furthermore, gaps in the publicly available genome scaffold of K. aquimarina DSM 16071 (NCBI Reference Sequence: NZ_ARFE00000000.1) were also filled using polymerase chain reaction (PCR) and Sanger sequencing. A comparative genomic analysis of five Kangiella and 18 non-Kangiella strains revealed insights into their metabolic potential. It was shown that low genomic redundancy and Kangiella-lineage-specific gene loss are the key reasons behind the genome reduction in Kangiella compared to that in any other free-living Oceanospirillales strain. The occurrence of relatively diverse and more frequent extracellular protease-coding genes along with the incomplete carbohydrate metabolic pathways in the genome suggests that Kangiella has high extracellular protein degradation potential. Growth of Kangiella strains has been observed using amino acids as the only carbon and nitrogen source and tends to increase with additional tryptone. Here, we propose that extracellular protein degradation and amino acid utilization are significant and prominent features of Kangiella. Our study provides more insight into the genomic traits and proteolytic metabolic capabilities of Kangiella.
Collapse
Affiliation(s)
- Jiahua Wang
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Lu
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Z Nawaz
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Pelve EA, Fontanez KM, DeLong EF. Bacterial Succession on Sinking Particles in the Ocean's Interior. Front Microbiol 2017; 8:2269. [PMID: 29225592 PMCID: PMC5706468 DOI: 10.3389/fmicb.2017.02269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Sinking particles formed in the photic zone and moving vertically through the water column are a main mechanism for nutrient transport to the deep ocean, and a key component of the biological carbon pump. The particles appear to be processed by a microbial community substantially different from the surrounding waters. Single cell genomics and metagenomics were employed to describe the succession of dominant bacterial groups during particle processing. Sinking particles were extracted from sediment traps at Station Aloha in the North Pacific Subtropical Gyre (NPSG) during two different trap deployments conducted in July and August 2012. The microbial communities in poisoned vs. live sediment traps differed significantly from one another, consistent with prior observations by Fontanez et al. (2015). Partial genomes from these communities were sequenced from cells belonging to the genus Arcobacter (commensalists potentially associated with protists such as Radiolaria), and Vibrio campbellii (a group previously reported to be associated with crustacea). These bacteria were found in the particle-associated communities at specific depths in both trap deployments, presumably due to their specific host-associations. Partial genomes were also sequenced from cells belonging to Idiomarina and Kangiella that were enriched in live traps over a broad depth range, that represented a motile copiotroph and a putatively non-motile algicidal saprophyte, respectively. Planktonic bacterial cells most likely caught in the wake of the particles belonging to Actinomarina and the SAR11 clade were also sequenced. Our results suggest that similar groups of eukaryote-associated bacteria are consistently found on sinking particles at different times, and that particle remineralization involves specific, reproducible bacterial succession events in oligotrophic ocean waters.
Collapse
Affiliation(s)
- Erik A Pelve
- Department of Cell and Molecular Biology-Molecular Evolution, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Kristina M Fontanez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edward F DeLong
- Daniel K. Inoue Center for Microbial Oceanograpy: Research and Education, Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
5
|
Ding JY, Shiu JH, Chen WM, Chiang YR, Tang SL. Genomic Insight into the Host-Endosymbiont Relationship of Endozoicomonas montiporae CL-33(T) with its Coral Host. Front Microbiol 2016; 7:251. [PMID: 27014194 PMCID: PMC4781883 DOI: 10.3389/fmicb.2016.00251] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33(T). Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral's Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.
Collapse
Affiliation(s)
- Jiun-Yan Ding
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Jia-Ho Shiu
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Wen-Ming Chen
- Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University Kaohsiung, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| |
Collapse
|
6
|
Choe H, Kim S, Oh J, Nasir A, Kim BK, Kim KM. Complete genome of Kangiella geojedonensis KCTC 23420(T), putative evidence for recent genome reduction in marine environments. Mar Genomics 2015; 24 Pt 3:215-7. [PMID: 26044616 DOI: 10.1016/j.margen.2015.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Kangiella geojedonensis KCTC 23420(T) is an aerobic, Gram-negative, non-motile, non-spore-forming, rod-shaped bacterium that was isolated from seawater off the southern coast of Korea. We here report the complete genome of K. geojedonensis KCTC 23420(T), which consists of 2,495,242 bp (G+C content of 43.78%) with 2,257 protein-coding genes, 41 tRNAs, 2 rRNA operons. The genome is smaller than the other closely related genomes, indicating that K. geojedonensis has recently experienced reductive evolution.
Collapse
Affiliation(s)
- Hanna Choe
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seil Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jeongsu Oh
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Byung Kwon Kim
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kyung Mo Kim
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Bioinformatics, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Xu FD, Li XG, Xiao X, Xu J. Kangiella profundi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2015; 65:2315-2319. [PMID: 25870256 DOI: 10.1099/ijs.0.000257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study employing a polyphasic approach was carried out on strain FT102(T), which was isolated from a deep-sea sediment sample collected in the south-west Indian Ocean at a depth of 2784 m. The strain was Gram-stain-negative, non-motile, rod-shaped and non-spore-forming. It grew optimally at 37-42 °C, pH 6.5-8.5 and in the presence of 1-4% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences confirmed the separation of the novel strain from recognized members of the genus Kangiella that are available in public databases. Strain FT102(T) exhibited 95.5-98.6% 16S rRNA gene sequence similarity to the type strains of the eight recognized species of the genus Kangiella. The chemotaxonomically characteristic fatty acid iso-C15:0 and ubiquinone Q-8 were also detected. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G + C content of strain FT102(T) was 45.0 mol%. The mean DNA-DNA relatedness values between strain FT102(T) and the type strains of Kangiella aquimarina and Kangiella koreensis were 47.3% and 13.7%, respectively. The combined results of phylogenetic, physiological and chemotaxonomic studies indicated that strain FT102(T) was affiliated with the genus Kangiella but differed from the recognized species of the genus Kangiella. Therefore, strain FT102T represents a novel species of the genus Kangiella, for which the name Kangiella profundi sp. nov. is proposed. The type strain is FT102(T) ( = CGMCC 1.12959(T) = KCTC 42297(T) = JCM 30232(T)).
Collapse
Affiliation(s)
- Fang-di Xu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue-Gong Li
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Xu
- Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, PR China.,State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
8
|
Characterization of alcohol dehydrogenase from Kangiella koreensis and its application to production of all-trans-retinol. Biotechnol Lett 2014; 37:849-56. [PMID: 25481533 DOI: 10.1007/s10529-014-1740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min(-1) mg(-1), a K m of 1.8 μM, and a k cat of 1.7 min(-1) for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD (+) as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l(-1), and 2,200 mg all-trans-retinal l(-1) in the presence of 5% (v/v) methanol, 1% (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l(-1) after 3 h, with a conversion yield of 27.3% (w/w) and a productivity of 200 mg l(-1) h(-1). This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.
Collapse
|
9
|
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:263. [PMID: 24917856 PMCID: PMC4040508 DOI: 10.3389/fmicb.2014.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles within salt marsh benthic food web pathways. We used DNA stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall, 146 bacterial species were detected using SIP, of which only 12 lineages were shared between enriched and non-enriched communities. Abundant groups from the 13C-labeled community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon utilization in salt marsh sediments and will allow future studies to target specific lineages to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of the potential of salt marshes to store carbon.
Collapse
Affiliation(s)
- Lindsay E Darjany
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
10
|
Ngo HPT, Hong SH, Hong MK, Pham TV, Oh DK, Kang LW. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1037-40. [PMID: 23989158 DOI: 10.1107/s1744309113022008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.
Collapse
Affiliation(s)
- Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Lagesen K, Ussery DW, Wassenaar TM. Genome update: the 1000th genome--a cautionary tale. MICROBIOLOGY-SGM 2010; 156:603-608. [PMID: 20093288 DOI: 10.1099/mic.0.038257-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level for a variety of logistical reasons, including differences in format and loading errors, such as those caused by file transfer protocol interruptions. This means that the 1000th genome will be different in the various databases. Some of the data on the highly accessed web pages are inaccurate, leading to false conclusions for example about the largest bacterial genome sequenced. Biological diversity is far greater than many have thought. For example, analysis of multiple Escherichia coli genomes has led to an estimate of around 45 000 gene families - more genes than are recognized in the human genome. Moreover, of the 1000 genomes available, not a single protein is conserved across all genomes. Excluding the members of the Archaea, only a total of four genes are conserved in all bacteria: two protein genes and two RNA genes.
Collapse
Affiliation(s)
- Karin Lagesen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway, and Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway.,Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dave W Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, 2800 Lyngby, Denmark
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.,Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|