1
|
Research Advances on Tilapia Streptococcosis. Pathogens 2021; 10:pathogens10050558. [PMID: 34066313 PMCID: PMC8148123 DOI: 10.3390/pathogens10050558] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus agalactiae, often referred to as group B streptococci (GBS), is a severe pathogen that can infect humans as well as other animals, including tilapia, which is extremely popular in commercial aquaculture. This pathogen causes enormous pecuniary loss, and typical symptoms of streptococcosis—the disease caused by S. agalactiae—include abnormal behavior, exophthalmos, and meningitis, among others. Multiple studies have examined virulence factors associated with S. agalactiae infection, and vaccines were explored, including studies of subunit vaccines. Known virulence factors include capsular polysaccharide (CPS), hemolysin, Christie-Atkins-Munch-Peterson (CAMP) factor, hyaluronidase (HAase), superoxide dismutase (SOD), and serine-threonine protein kinase (STPK), and effective vaccine antigens reported to date include GapA, Sip, OCT, PGK, FbsA, and EF-Tu. In this review, I summarize findings from several studies about the etiology, pathology, virulence factors, and vaccine prospects for S. agalactiae. I end by considering which research areas are likely to yield success in the prevention and treatment of tilapia streptococcosis.
Collapse
|
2
|
Efficacy of Feed-Based Formalin-Killed Vaccine of Streptococcus iniae Stimulates the Gut-Associated Lymphoid Tissues and Immune Response of Red Hybrid Tilapia. Vaccines (Basel) 2021; 9:vaccines9010051. [PMID: 33466950 PMCID: PMC7830294 DOI: 10.3390/vaccines9010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Red hybrid tilapia were fed a formalin-killed oral Streptococcus iniae vaccine (FKV) in the present study was assessed. Three hundred Red hybrid tilapia 80 ± 10 g were divided into five groups (1A, 1B, 2A, 2B, and Cx), each consisting of 60 fish. Fish from Groups 1A, 1B, 2A, and 2B were fed with FKV over different periods of administration, while Group 2B was the only group of fish to receive an oral booster vaccination on day 14- and 21-days post-vaccination (dpv). Group Cx was fed with normal pellets containing no vaccine as a control group. At four weeks post-vaccination (wpv), all fish were experimentally infected with S. iniae. Groups 2A and 2B had the lowest level of mortalities following vaccination (45% and 30%, respectively) compared to Groups 1A and 1B (80% and 55%, respectively), while the level of mortalities in Group Cx was 100%. All vaccinated groups showed a significant increase in anti-S. iniae IgM levels (p < 0.05) in serum, mucus, and gut-lavage, while Group Cx did not (p > 0.05) and all fish in this group died by five weeks post-infection. In conclusion, fish fed with the S. iniae FKV had a greater level of protection against S. iniae, with increased specific antibody response to the vaccine and there was also evidence of GALT stimulation by the vaccine.
Collapse
|
3
|
Chen SL. Genomic Insights Into the Distribution and Evolution of Group B Streptococcus. Front Microbiol 2019; 10:1447. [PMID: 31316488 PMCID: PMC6611187 DOI: 10.3389/fmicb.2019.01447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a bacteria with truly protean biology. It infects a variety of hosts, among which the most commonly studied are humans, cattle, and fish. GBS holds a singular position in the history of bacterial genomics, as it was the substrate used to describe one of the first major conceptual advances of comparative genomics, the idea of the pan-genome. In this review, I describe a brief history of GBS and the major contributions of genomics to understanding its genome plasticity and evolution as well as its molecular epidemiology, focusing on the three hosts mentioned above. I also discuss one of the major recent paradigm shifts in our understanding of GBS evolution and disease burden: foodborne GBS can cause invasive infections in humans.
Collapse
Affiliation(s)
- Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Group, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Gizachew M, Tiruneh M, Moges F, Tessema B. Streptococcus agalactiae maternal colonization, antibiotic resistance and serotype profiles in Africa: a meta-analysis. Ann Clin Microbiol Antimicrob 2019; 18:14. [PMID: 30922308 PMCID: PMC6437888 DOI: 10.1186/s12941-019-0313-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Background Maternal rectovaginal colonization with Streptococcus agalactiae (Group B Streptococcus or GBS) is the most common route for the GBS disease in the perinatal period. The knowledge of maternal colonization, antibiotic resistance and serotype profiles is substantially needed to formulate the broad vaccine. However, it has not been estimated in Africa. This meta-analysis was aimed to determine the pooled prevalence of colonization, antibiotic resistance and serotype profiles of GBS reported in Africa. Methods Potentially relevant studies from 1989 to 31th January, 2019 were retrieved from the Medline/PubMed, EMBASE, HINARI online databases, periodicals and by requesting authors. Unpublished studies retrieved from grey literature through Google and Google Scholar. Pooled estimates were calculated using the random effect model. Subgroup analysis was done to investigate the burden of colonization across sub-regions, sampling site and countries. Summary estimates were presented using words, Forest plots and Tables. Heterogeneity was assessed using the I2 statistic. Results Eighty-three articles were assessed, of which 57 studies conducted in five sub-regions with 21 countries (22,206 pregnant women) met pre-specified inclusion criteria. The overall estimate of recto-vaginal colonization was 19.3% (95% CI 16.9, 21.7). The highest estimate was observed in Southern Africa, 23.8% (95% CI 18.7, 28.9), followed by Northern Africa, 22.7% (95% CI 18.2, 27.2) while the lowest was driven from the Eastern Africa, 15.4% (95% CI 12.1, 18.7). Considerable heterogeneity across and within regions, sampling site, screening methods and countries (I2 > 75%); and the publication bias were observed (p = 0.031). GBS showed the highest resistance to tetracycline. Resistance to penicillin, amoxicillin, chloramphenicol, ampicillin, ceftriaxone, ciprofloxacin, erythromycin, vancomycin and clindamycin also observed. The V, III, Ia, Ib, and II serotypes altogether were accounted 91.8% in the African studies. Conclusions The pooled estimate of the maternal colonization with GBS was 19.3% which is equivalent with other many primary and review reports worldwide. The most antibiotic resistance estimate was recorded in the tetracycline followed by penicillin. Five serotypes were the most prevalent in Africa and more data on the antibiotic résistance and serotype distribution patterns are needed from developing countries to devise the effective preventive measures. In addition, the antibiotic susceptibility test methods used in the Africa shall be assessed for its quality. Trial registration Prospero Registration Number CRD42018094525
Collapse
Affiliation(s)
- Mucheye Gizachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Moges Tiruneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Tavares GC, Pereira FL, Barony GM, Rezende CP, da Silva WM, de Souza GHMF, Verano-Braga T, de Carvalho Azevedo VA, Leal CAG, Figueiredo HCP. Delineation of the pan-proteome of fish-pathogenic Streptococcus agalactiae strains using a label-free shotgun approach. BMC Genomics 2019; 20:11. [PMID: 30616502 PMCID: PMC6323687 DOI: 10.1186/s12864-018-5423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a major pathogen of Nile tilapia, a global commodity of the aquaculture sector. The aims of this study were to evaluate protein expression in the main genotypes of GBS isolated from diseased fishes in Brazil using a label-free shotgun nano-liquid chromatography-ultra definition mass spectrometry (nanoLC-UDMSE) approach and to compare the differential abundance of proteins identified in strains isolated from GBS-infected fishes and humans. RESULTS A total of 1070 protein clusters were identified by nanoLC-UDMSE in 5 fish-adapted GBS strains belonging to sequence types ST-260 and ST-927 and the non-typeable (NT) lineage and 1 human GBS strain (ST-23). A total of 1065 protein clusters corresponded to the pan-proteome of fish-adapted GBS strains; 989 of these were identified in all fish-adapted GBS strains (core proteome), and 62 were shared by at least two strains (accessory proteome). Proteins involved in the stress response and in the regulation of gene expression, metabolism and virulence were detected, reflecting the adaptive ability of fish-adapted GBS strains in response to stressor factors that affect bacterial survival in the aquatic environment and bacterial survival and multiplication inside the host cell. Measurement of protein abundance among different hosts showed that 5 and 26 proteins were exclusively found in the human- and fish-adapted GBS strains, respectively; the proteins exclusively identified in fish isolates were mainly related to virulence factors. Furthermore, 215 and 269 proteins were up- and down-regulated, respectively, in the fish-adapted GBS strains in comparison to the human isolate. CONCLUSIONS Our study showed that the core proteome of fish-adapted GBS strains is conserved and demonstrated high similarity of the proteins expressed by fish-adapted strains to the proteome of the human GBS strain. This high degree of proteome conservation of different STs suggests that, a monovalent vaccine may be effective against these variants.
Collapse
Affiliation(s)
- Guilherme Campos Tavares
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Luiz Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Morais Barony
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Perdigão Rezende
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wanderson Marques da Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Augusto Gomes Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique César Pereira Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,School of Veterinary, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
6
|
Tavares GC, Carvalho AF, Pereira FL, Rezende CP, Azevedo VAC, Leal CAG, Figueiredo HCP. Transcriptome and Proteome of Fish-Pathogenic Streptococcus agalactiae Are Modulated by Temperature. Front Microbiol 2018; 9:2639. [PMID: 30450092 PMCID: PMC6224512 DOI: 10.3389/fmicb.2018.02639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus agalactiae is one of the most important pathogens associated with streptococcosis outbreaks in Nile tilapia farms worldwide. High water temperature (above 27°C) has been described as a predisposing factor for the disease in fish. At low temperatures (below 25°C), fish mortalities are not usually observed in farms. Temperature variation can modulate the expression of genes and proteins involved in metabolism, adaptation, and bacterial pathogenicity, thus increasing or decreasing the ability to infect the host. This study aimed to evaluate the transcriptome and proteome of a fish-pathogenic S. agalactiae strain SA53 subjected to in vitro growth at different temperatures using a microarray and label-free shotgun LC-HDMSE approach. Biological triplicates of isolates were cultured in BHIT broth at 22 or 32°C for RNA and protein isolation and submitted for transcriptomic and proteomic analyses. In total, 1,730 transcripts were identified in SA53, with 107 genes being differentially expressed between the temperatures evaluated. A higher number of genes related to metabolism, mainly from the phosphotransferase system (PTS) and ATP-binding cassette (ABC) transport system, were upregulated at 32°C. In the proteome analysis, 1,046 proteins were identified in SA53, of which 81 were differentially regulated between 22 and 32°C. Proteins involved in defense mechanisms, lipid transport and metabolism, and nucleotide transport and metabolism were upregulated at 32°C. A higher number of interactions were observed in proteins involved in nucleotide transport and metabolism. We observed a low correlation between the transcriptome and proteome datasets. Our study indicates that the transcriptome and proteome of a fish-adapted S. agalactiae strain are modulated by temperature, particularly showing differential expression of genes/proteins involved in metabolism, virulence factors, and adaptation.
Collapse
Affiliation(s)
- Guilherme C Tavares
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana P Rezende
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- LGCM-Laboratory of Cellular and Molecular Genetics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A G Leal
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique C P Figueiredo
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms. Sci Rep 2017; 7:13538. [PMID: 29051505 PMCID: PMC5648781 DOI: 10.1038/s41598-017-13228-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Collapse
|
8
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
9
|
Assis GBN, Tavares GC, Pereira FL, Figueiredo HCP, Leal CAG. Natural coinfection by Streptococcus agalactiae and Francisella noatunensis subsp. orientalis in farmed Nile tilapia (Oreochromis niloticus L.). JOURNAL OF FISH DISEASES 2017; 40:51-63. [PMID: 27144661 DOI: 10.1111/jfd.12493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 05/20/2023]
Abstract
Streptococcus agalactiae and Francisella noatunensis subsp. orientalis (Fno) are important pathogens for farm-raised tilapia worldwide. There are no reports of coinfection caused by S. agalactiae and Fno in fish. This study aimed to determine the aetiology of atypical mortalities in a cage farm of Nile tilapia and to characterize the genetic diversity of the isolates. Fifty-two fish were sampled and subjected to parasitological and bacteriological examination. The S. agalactiae and Fno isolates were genotyped using MLST and REP-PCR, respectively. Whole-genome sequencing was performed to confirm the MLST results. Seven fish were shown coinfected by S. agalactiae and Fno. Chronic hypoxia and a reduction in the water temperature were determined as risk factors for coinfection. Fno isolates were shown clonally related in REP-PCR. The MLST analysis revealed that the S. agalactiae isolates from seven coinfected fish were negative for the glcK gene; however, these were determined to be members of clonal complex CC-552. This is the first description of coinfection by S. agalactiae and Fno in farm-raised Nile tilapia. The coinfection was predisposed by chronic hypoxia and was caused by the main genotypes of S. agalactiae and Fno reported in Brazil. Finally, a new S. agalactiae genotype with glcK gene partially deleted was described.
Collapse
Affiliation(s)
- G B N Assis
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G C Tavares
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - F L Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - H C P Figueiredo
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C A G Leal
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Complete Genome Sequence of Streptococcus agalactiae Strain S25 Isolated from Peritoneal Liquid of Nile Tilapia. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00784-16. [PMID: 27491974 PMCID: PMC4974326 DOI: 10.1128/genomea.00784-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiae (Lancefield group B; GBS) is one of the major pathogens in fish production, especially in Nile tilapia (Oreochromis niloticus). The genomic characteristics of GBS isolated from fish must be more explored. Thus, we present here the genome of GBS S25, isolated from Nile tilapia from Brazil.
Collapse
|
11
|
Complete genome sequence of Streptococcus agalactiae strain GBS85147 serotype of type Ia isolated from human oropharynx. Stand Genomic Sci 2016; 11:39. [PMID: 27274785 PMCID: PMC4891928 DOI: 10.1186/s40793-016-0158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/23/2016] [Indexed: 11/30/2022] Open
Abstract
Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %.
Collapse
|
12
|
Pereira FL, Soares SC, Dorella FA, Leal CA, Figueiredo HC. Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes. Genomics 2016; 107:189-98. [DOI: 10.1016/j.ygeno.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
|
13
|
Draft Genome Sequences of Streptococcus agalactiae Serotype Ia and III Isolates from Tilapia Farms in Thailand. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00122-16. [PMID: 27013037 PMCID: PMC4807226 DOI: 10.1128/genomea.00122-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiaeserotypes Ia and III were isolated from infected tilapia in cage and pond culture farms in Thailand during 2012 to 2014, in which pathogenicity analysis demonstrated that serotype III showed higher virulence than serotype Ia. Here, we report the draft genome sequencing of piscineS. agalactiaeserotypes Ia and III.
Collapse
|
14
|
Su YL, Feng J, Li YW, Bai JS, Li AX. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia. JOURNAL OF FISH DISEASES 2016; 39:229-238. [PMID: 25858765 DOI: 10.1111/jfd.12358] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/10/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish.
Collapse
Affiliation(s)
- Y-L Su
- Key Laboratory for Aquatic Products Safety of Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Haizhu District, Guangzhou, Guangdong Province, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - J Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Y-W Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Haizhu District, Guangzhou, Guangdong Province, China
| | - J-S Bai
- Guangzhou Airport Extry-Exit Inspection and Quarantine Bureau, Guangzhou, Guangdong Province, China
| | - A-X Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Haizhu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Delannoy CMJ, Zadoks RN, Crumlish M, Rodgers D, Lainson FA, Ferguson HW, Turnbull J, Fontaine MC. Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish. JOURNAL OF FISH DISEASES 2016; 39:13-29. [PMID: 25399660 DOI: 10.1111/jfd.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 06/04/2023]
Abstract
Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10(7) cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment.
Collapse
Affiliation(s)
- C M J Delannoy
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - R N Zadoks
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - M Crumlish
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - D Rodgers
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - F A Lainson
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - H W Ferguson
- School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - J Turnbull
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - M C Fontaine
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| |
Collapse
|
16
|
Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 2016; 77:307-19. [DOI: 10.1016/j.biomaterials.2015.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
|
17
|
Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. INFECTION GENETICS AND EVOLUTION 2015; 36:307-314. [PMID: 26455417 DOI: 10.1016/j.meegid.2015.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Channarong Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Modification of the CpsA protein reveals a role in alteration of the Streptococcus agalactiae cell envelope. Infect Immun 2015; 83:1497-506. [PMID: 25644003 DOI: 10.1128/iai.02656-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bacterial cell envelope is a crucial first line of defense for a systemic pathogen, with production of capsular polysaccharides and maintenance of the peptidoglycan cell wall serving essential roles in survival in the host environment. The LytR-CpsA-Psr proteins are important for cell envelope maintenance in many Gram-positive species. In this study, we examined the role of the extracellular domain of the CpsA protein of the zoonotic pathogen group B Streptococcus in capsule production and cell wall integrity. CpsA has multiple functional domains, including a DNA-binding/transcriptional activation domain and a large extracellular domain. We demonstrated that episomal expression of extracellularly truncated CpsA causes a dominant-negative effect on capsule production when expressed in the wild-type strain. Regions of the extracellular domain essential to this phenotype were identified. The dominant-negative effect could be recapitulated by addition of purified CpsA protein or a short CpsA peptide to cultures of wild-type bacteria. Changes in cell wall morphology were also observed when the dominant-negative peptide was added to wild-type cultures. Fluorescently labeled CpsA peptide could be visualized bound at the mid-cell region near the division septae, suggesting a novel role for CpsA in cell division. Finally, expression of truncated CpsA also led to attenuation of virulence in zebrafish models of infection, to levels below that of a cpsA deletion strain, demonstrating the key role of the extracellular domain in virulence of GBS.
Collapse
|
19
|
Wang YT, Huang HY, Tsai MA, Wang PC, Jiang BH, Chen SC. Phosphoglycerate kinase enhanced immunity of the whole cell of Streptococcus agalactiae in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2014; 41:250-259. [PMID: 25218275 DOI: 10.1016/j.fsi.2014.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus agalactiae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of warmwater fish species. The outer-surface proteins in bacterial pathogens play an important role in pathogenesis. We evaluated the immunogenicity of two of the identified surface proteins namely phosphoglycerate kinase (PGK) and ornithine carbamoyl-transferase (OCT). PGK and OCT were over-expressed and purified from Escherichia coli and used as the subunit vaccines in tilapia. Tilapia immunized with the S. agalactiae modified bacteria vaccine (whole cell preparations with recombinant PGK and OCT proteins) individually were tested for the efficacy. OCT and PGK combined with WC had a higher survival rate. A high-level protection and significant specific antibody responses against S. agalactiae challenge was observed upon the vaccinated tilapia with the purified PGK protein and S. agalactiae whole cells. The specific antibody titer against S. agalactiae antigen suggested that increased antibody titers were correlated with post-challenge survival rate. Il-1β expression profile was higher in PGK + WC-treated group. Tnf-α expression in the PGK + WC group was significantly increased. Taken together, our results suggested the combinations of recombinant protein and whole cell may elicit immune responses that reach greater protection than that of individual S. agalactiae components.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Hsing-Yen Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Bo-Huang Jiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
20
|
Nitschke H, Slickers P, Müller E, Ehricht R, Monecke S. DNA microarray-based typing of Streptococcus agalactiae isolates. J Clin Microbiol 2014; 52:3933-43. [PMID: 25165085 PMCID: PMC4313228 DOI: 10.1128/jcm.02411-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae.
Collapse
Affiliation(s)
- Heike Nitschke
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany Department of Obstetrics and Gynecology, Elblandklinikum Meißen, Meissen, Germany
| | | | | | | | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany Alere Technologies GmbH, Jena, Germany
| |
Collapse
|
21
|
Rosa-Fraile M, Dramsi S, Spellerberg B. Group B streptococcal haemolysin and pigment, a tale of twins. FEMS Microbiol Rev 2014; 38:932-46. [PMID: 24617549 PMCID: PMC4315905 DOI: 10.1111/1574-6976.12071] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022] Open
Abstract
Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of neonatal meningitis and septicaemia. Most clinical isolates express simultaneously a β-haemolysin/cytolysin and a red polyenic pigment, two phenotypic traits important for GBS identification in medical microbiology. The genetic determinants encoding the GBS haemolysin and pigment have been elucidated and the molecular structure of the pigment has been determined. The cyl operon involved in haemolysin and pigment production is regulated by the major two-component system CovS/R, which coordinates the expression of multiple virulence factors of GBS. Genetic analyses indicated strongly that the haemolysin activity was due to a cytolytic toxin encoded by cylE. However, the biochemical nature of the GBS haemolysin has remained elusive for almost a century because of its instability during purification procedures. Recently, it has been suggested that the haemolytic and cytolytic activity of GBS is due to the ornithine rhamnopolyenic pigment and not to the CylE protein. Here we review and summarize our current knowledge of the genetics, regulation and biochemistry of these twin GBS phenotypic traits, including their functions as GBS virulence factors.
Collapse
Affiliation(s)
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram positif, Institut PasteurParis, France
- CNRS ERL 3526Paris, France
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital UlmUlm, Germany
| |
Collapse
|
22
|
Godoy D, Carvalho-Castro G, Leal C, Pereira U, Leite R, Figueiredo H. Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae. Lett Appl Microbiol 2013; 57:476-83. [DOI: 10.1111/lam.12138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 12/01/2022]
Affiliation(s)
- D.T. Godoy
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - G.A. Carvalho-Castro
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - C.A.G. Leal
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - U.P. Pereira
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - R.C. Leite
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - H.C.P. Figueiredo
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| |
Collapse
|