1
|
Breider S, Sehar S, Berger M, Thomas T, Brinkhoff T, Egan S. Genome sequence of Epibacterium ulvae strain DSM 24752 T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. ENVIRONMENTAL MICROBIOME 2019; 14:4. [PMID: 33902719 PMCID: PMC7989816 DOI: 10.1186/s40793-019-0343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 06/12/2023]
Abstract
Strain U95T (= DSM 24752T = LMG 26464T) is the type strain of Epibacterium ulvae, which is the type species of the genus Epibacterium. This genus belongs to the marine Roseobacter group. E. ulvae Strain U95T was isolated from the macroalga Ulva australis, is Gram-negative, rod-shaped and motile. Here we describe the permanent draft genome sequence and annotation of E. ulvae U95T with a focus on secondary metabolite production and interaction with its host. The genome contains 4,092,893 bp, 3977 protein-coding genes and 60 RNA genes. The genome encodes a gene cluster for synthesis of the blue-pigmented secondary metabolite indigoidine and contains several genes for adhesion mechanisms, putative bacteriocin, siderophores, a type VI secretion system, and enzymes that confer oxidative stress resistance. Combined, these features may aid in the successful colonization and persistence of E. ulvae on host surfaces and in competition with the surrounding microbial consortium.
Collapse
Affiliation(s)
- Sven Breider
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Shama Sehar
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martine Berger
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Torsten Thomas
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thorsten Brinkhoff
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Draft genome sequence of Thalassobius gelatinovorus CECT 4357 T , a roseobacter with the potential ability to degrade polycyclic aromatic hydrocarbons. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Rodrigo-Torres L, Pujalte MJ, Arahal DR. Draft genome of Leisingera aquaemixtae CECT 8399(T), a member of the Roseobacter clade isolated from a junction of fresh and ocean water in Jeju Island, South Korea. GENOMICS DATA 2016; 7:233-6. [PMID: 26981415 PMCID: PMC4778666 DOI: 10.1016/j.gdata.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 10/26/2022]
Abstract
We report the draft genome sequence and annotation of Leisingera aquaemixtae CECT 8399(T) (DDBJ/EMBL/GenBank accession number CYSR00000000) which comprises 4,614,060 bp, 4313 protein coding genes, 54 tRNA coding genes and 7 rRNA coding genes. General findings of the annotated genome, such as pigment indigoidine operon, phenylacetate oxidation genes or predictable number of replicons, are commented in comparison to other Leisingera species. Average Nucleotide Identity between available genomes of type strains of species of Leisingera and Phaeobacter genera has been calculated to evaluate its current classification.
Collapse
Affiliation(s)
- Lidia Rodrigo-Torres
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - María J Pujalte
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - David R Arahal
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Collins AJ, Fullmer MS, Gogarten JP, Nyholm SV. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol 2015; 6:123. [PMID: 25755651 PMCID: PMC4337385 DOI: 10.3389/fmicb.2015.00123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/01/2015] [Indexed: 12/24/2022] Open
Abstract
The accessory nidamental gland (ANG) of the female Hawaiian bobtail squid, Euprymna scolopes, houses a consortium of bacteria including members of the Flavobacteriales, Rhizobiales, and Verrucomicrobia but is dominated by members of the Roseobacter clade (Rhodobacterales) within the Alphaproteobacteria. These bacteria are deposited into the jelly coat of the squid’s eggs, however, the function of the ANG and its bacterial symbionts has yet to be elucidated. In order to gain insight into this consortium and its potential role in host reproduction, we cultured 12 Rhodobacterales isolates from ANGs of sexually mature female squid and sequenced their genomes with Illumina sequencing technology. For taxonomic analyses, the ribosomal proteins of 79 genomes representing both roseobacters and non-roseobacters along with a separate MLSA analysis of 33 housekeeping genes from Roseobacter organisms placed all 12 isolates from the ANG within two groups of a single Roseobacter clade. Average nucelotide identity analysis suggests the ANG isolates represent three genera (Leisingera, Ruegeria, and Tateyamaria) comprised of seven putative species groups. All but one of the isolates contains a predicted Type VI secretion system, which has been shown to be important in secreting signaling and/or effector molecules in host–microbe associations and in bacteria–bacteria interactions. All sequenced genomes also show potential for secondary metabolite production, and are predicted to be involved with the production of acyl homoserine lactones (AHLs) and/or siderophores. An AHL bioassay confirmed AHL production in three tested isolates and from whole ANG homogenates. The dominant symbiont, Leisingera sp. ANG1, showed greater viability in iron-limiting conditions compared to other roseobacters, possibly due to higher levels of siderophore production. Future comparisons will try to elucidate novel metabolic pathways of the ANG symbionts to understand their putative role in host development.
Collapse
Affiliation(s)
- Andrew J Collins
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Microbiology, The Forsyth Institute Cambridge, MA USA
| | - Matthew S Fullmer
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Johann P Gogarten
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
5
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijs.0.000007-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacteriological Code deals with the nomenclature of prokaryotes. This may include existing names (the Approved Lists of Bacterial Names) as well as new names and new combinations. In this sense the Code is also dealing indirectly with taxonomic opinions. However, as with most codes of nomenclature there are no mechanisms for formally recording taxonomic opinions that do not involve the creation of new names or new combinations. In particular, it would be desirable for taxonomic opinions resulting from the creation of synonyms or emended descriptions to be made widely available to the public. In 2004, the Editorial Board of the International Journal of Systematic and Evolutionary Microbiology (IJSEM) agreed unanimously that it was desirable to cover such changes in taxonomic opinions (i.e. the creation of synonyms or the emendation of circumscriptions) previously published outside the IJSEM, and to introduce a List of Changes in Taxonomic Opinion [Notification of changes in taxonomic opinion previously published outside the IJSEM; Euzéby et al. (2004). Int J Syst Evol Microbiol
54, 1429-1430]. Scientists wishing to have changes in taxonomic opinion included in future lists should send one copy of the pertinent reprint or a photocopy or a PDF file thereof to the IJSEM Editorial Office or to the Lists Editor.
It must be stressed that the date of proposed taxonomic changes is the date of the original publication not the date of publication of the list. Taxonomic opinions included in the List of Changes in Taxonomic Opinion cannot be considered as validly published nor, in any other way, approved by the International Committee on Systematics of Prokaryotes and its Judicial Commission. The names that are to be used are those that are the ‘correct names’ (in the sense of Principle 6) in the opinion of the bacteriologist, with a given circumscription, position and rank. A particular name, circumscription, position and rank does not have to be adopted in all circumstances. Consequently, the List of Changes in Taxonomic Opinion must be considered as a service to bacteriology and it has no ‘official character’, other than providing a centralized point for registering/indexing such changes in a way that makes them easily accessible to the scientific community.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, U.S.A
| |
Collapse
|
6
|
Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J, Pradella S, Klenk HP, Brinkhoff T, Göker M. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Front Microbiol 2014; 5:416. [PMID: 25157246 PMCID: PMC4127530 DOI: 10.3389/fmicb.2014.00416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/22/2014] [Indexed: 11/13/2022] Open
Abstract
Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus, and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov., and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.
Collapse
Affiliation(s)
- Sven Breider
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of OldenburgOldenburg, Germany
| | - Carmen Scheuner
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Peter Schumann
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Anne Fiebig
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörn Petersen
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Silke Pradella
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Hans-Peter Klenk
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Thorsten Brinkhoff
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of OldenburgOldenburg, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
7
|
Frank O, Pradella S, Rohde M, Scheuner C, Klenk HP, Göker M, Petersen J. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210(T) (= DSM 26640(T) = BS107(T)). Stand Genomic Sci 2014; 9:914-32. [PMID: 25197473 PMCID: PMC4148982 DOI: 10.4056/sigs.5179110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phaeobacter gallaeciensis CIP 105210(T) (= DSM 26640(T) = BS107(T)) is the type strain of the species Phaeobacter gallaeciensis. The genus Phaeobacter belongs to the marine Roseobacter group (Rhodobacteraceae, Alphaproteobacteria). Phaeobacter species are effective colonizers of marine surfaces, including frequent associations with eukaryotes. Strain BS107(T) was isolated from a rearing of the scallop Pecten maximus. Here we describe the features of this organism, together with the complete genome sequence, comprising eight circular replicons with a total of 4,448 genes. In addition to a high number of extrachromosomal replicons, the genome contains six genomic island and three putative prophage regions, as well as a hybrid between a plasmid and a circular phage. Phylogenomic analyses confirm previous results, which indicated that the originally reported P. gallaeciensis type-strain deposit DSM 17395 belongs to P. inhibens and that CIP 105210(T) (= DSM 26640(T)) is the sole genome-sequenced representative of P. gallaeciensis.
Collapse
Affiliation(s)
- Oliver Frank
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silke Pradella
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Carmen Scheuner
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
8
|
Breider S, Teshima H, Petersen J, Chertkov O, Dalingault H, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, Detter JC, Rohde M, Tindall BJ, Kyrpides NC, Woyke T, Simon M, Göker M, Klenk HP, Brinkhoff T. Genome sequence and emended description of Leisingera nanhaiensis strain DSM 24252(T) isolated from marine sediment. Stand Genomic Sci 2014; 9:687-703. [PMID: 25197454 PMCID: PMC4148953 DOI: 10.4056/sigs.3828824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leisingera nanhaiensis DSM 24252T is a Gram-negative, motile, rod-shaped marine Alphaproteobacterium, isolated from sandy marine sediments. Here we present the non-contiguous genome sequence and annotation together with a summary of the organism's phenotypic features. The 4,948,550 bp long genome with its 4,832 protein-coding and 64 RNA genes consists of one chromosome and six extrachromosomal elements with lengths of 236 kb, 92 kb, 61 kb, 58 kb, 56 kb, and 35 kb, respectively. The analysis of the genome showed that DSM 24252T possesses all genes necessary for dissimilatory nitrite reduction, and the strain was shown to be facultatively anaerobic, a deviation from the original description that calls for an emendation of the species. Also present in the genome are genes coding for a putative prophage, for gene-transfer agents and for the utilization of methylated amines. Phylogenetic analysis and intergenomic distances indicate that L. nanhaiensis might not belong to the genus Leisingera.
Collapse
Affiliation(s)
- Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Hazuki Teshima
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Olga Chertkov
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Hajnalka Dalingault
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne A Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Manfred Rohde
- HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Brian J Tindall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Dogs M, Voget S, Teshima H, Petersen J, Davenport K, Dalingault H, Chen A, Pati A, Ivanova N, Goodwin LA, Chain P, Detter JC, Standfest S, Rohde M, Gronow S, Kyrpides NC, Woyke T, Simon M, Klenk HP, Göker M, Brinkhoff T. Genome sequence of Phaeobacter inhibens type strain (T5(T)), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens. Stand Genomic Sci 2013; 9:334-50. [PMID: 24976890 PMCID: PMC4062626 DOI: 10.4056/sigs.4448212] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Strain T5(T) is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5(T) was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5(T) comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5(T) possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5(T) a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description.
Collapse
Affiliation(s)
- Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Hazuki Teshima
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Karen Davenport
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Hajnalka Dalingault
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Lynne A. Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C. Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sonja Standfest
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| |
Collapse
|
10
|
Buddruhs N, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, Detter JC, Gronow S, Kyrpides NC, Woyke T, Göker M, Brinkhoff T, Klenk HP. Complete genome sequence of the marine methyl-halide oxidizing Leisingera methylohalidivorans type strain (DSM 14336(T)), a representative of the Roseobacter clade. Stand Genomic Sci 2013; 9:128-41. [PMID: 24501651 PMCID: PMC3910543 DOI: 10.4056/sigs.4297965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leisingera methylohalidivorans Schaefer et al. 2002 emend. Vandecandelaere et al. 2008 is the type species of the genus Leisingera. The genus belongs to the Roseobacter clade (Rhodobacteraceae, Alphaproteobacteria), a widely distributed lineage in marine environments. Leisingera and particularly L. methylohalidivorans strain MB2(T) is of special interest due to its methylotrophy. Here we describe the complete genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. The 4,650,996 bp long genome with its 4,515 protein-coding and 81 RNA genes consists of three replicons, a single chromosome and two extrachromosomal elements with sizes of 221 kb and 285 kb.
Collapse
Affiliation(s)
- Nora Buddruhs
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Olga Chertkov
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne Fiebig
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St.Petersburg, Russia
| | - Lynne A Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sabine Gronow
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Markus Göker
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICMB), Oldenburg, Germany
| | - Hans-Peter Klenk
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|