1
|
Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer. BIOLOGY 2023; 12:biology12020243. [PMID: 36829520 PMCID: PMC9953144 DOI: 10.3390/biology12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
In Uruguayan soils, populations of native and naturalized rhizobia nodulate white clover. These populations include efficient rhizobia but also parasitic strains, which compete for nodule occupancy and hinder optimal nitrogen fixation by the grassland. Nodulation competitiveness assays using gusA-tagged strains proved a high nodule occupancy by the inoculant strain U204, but this was lower than the strains with intermediate efficiencies, U268 and U1116. Clover biomass production only decreased when the parasitic strain UP3 was in a 99:1 ratio with U204, but not when UP3 was at equal or lower numbers than U204. Based on phylogenetic analyses, strains with different efficiencies did not cluster together, and U1116 grouped with the parasitic strains. Our results suggest symbiotic gene transfer from an effective strain to U1116, thereby improving its symbiotic efficiency. Genome sequencing of U268 and U204 strains allowed us to assign them to species Rhizobium redzepovicii, the first report of this species nodulating clover, and Rhizobium leguminosarun, respectively. We also report the presence of hrrP- and sapA-like genes in the genomes of WSM597, U204, and U268 strains, which are related to symbiotic efficiency in rhizobia. Interestingly, we report here chromosomally located hrrP-like genes.
Collapse
|
2
|
Kozieł M, Kalita M, Janczarek M. Genetic diversity of microsymbionts nodulating Trifolium pratense in subpolar and temperate climate regions. Sci Rep 2022; 12:12144. [PMID: 35840628 PMCID: PMC9287440 DOI: 10.1038/s41598-022-16410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rhizobia are soil-borne bacteria forming symbiotic associations with legumes and fixing atmospheric dinitrogen. The nitrogen-fixation potential depends on the type of host plants and microsymbionts as well as environmental factors that affect the distribution of rhizobia. In this study, we compared genetic diversity of bacteria isolated from root nodules of Trifolium pratense grown in two geographical regions (Tromsø, Norway and Lublin, Poland) located in distinct climatic (subpolar and temperate) zones. To characterize these isolates genetically, three PCR-based techniques (ERIC, BOX, and RFLP of the 16S-23S rRNA intergenic spacer), 16S rRNA sequencing, and multi-locus sequence analysis of chromosomal house-keeping genes (atpD, recA, rpoB, gyrB, and glnII) were done. Our results indicate that a great majority of the isolates are T. pratense microsymbionts belonging to Rhizobium leguminosarum sv. trifolii. A high diversity among these strains was detected. However, a lower diversity within the population derived from the subpolar region in comparison to that of the temperate region was found. Multi-locus sequence analysis showed that a majority of the strains formed distinct clusters characteristic for the individual climatic regions. The subpolar strains belonged to two (A and B) and the temperate strains to three R. leguminosarum genospecies (B, E, and K), respectively.
Collapse
Affiliation(s)
- Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| |
Collapse
|
3
|
Nombre Rodríguez-Navarro D, Lorite MJ, Temprano Vera FJ, Camacho M. Selection and characterization of Spanish Trifolium-nodulating rhizobia for pasture inoculation. Syst Appl Microbiol 2021; 45:126290. [PMID: 34999517 DOI: 10.1016/j.syapm.2021.126290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Identification of elite nitrogen-fixing rhizobia strains is a continuous and never ending effort, since new legume species can be cultivated in different agro systems or are introduced into new areas. This current study reports on the taxonomic affiliation and symbiotic proficiency of nine strains of Trifolium-nodulating rhizobia isolated from different pasture areas in Spain, as well as three Rhizobium leguminosarum bv. trifolii reference strains, on eleven Trifolium species. Based on 16S rRNA gene sequences the strains belonged to the R. leguminosarum species complex. Additional phylogenetic analyses of the housekeeping genes recA, atpD and rpoB showed the strains were closely related to the species R. leguminosarum, R. laguerreae, R. indicum, R. ruizarguesonis or R. acidisoli. In addition, three strains had no clear affiliation and could represent putative new species, although two of the reference strains were positioned close to R. ruizarguesonis. nodC gene phylogeny allowed the discrimination between strains isolated from annual or perennial Trifolium species and placed all of them in the symbiovar trifolii. Neither geographic origin nor host-plant species could be correlated with the taxonomic affiliation of the strains and a high degree of phenotypic diversity was found among this set of strains. The strong interaction of plant species with the rhizobial strains found for biological nitrogen fixation (BNF) was noteworthy, and allowed the identification of rhizobial strains with a maximum proficiency for certain trefoil species. Several strains showed high BNF potential with a wide range of clover species, which made them valuable strains for inoculant manufacturers and they would be particularly useful for inoculation of seed mixtures in natural or cultivated pastures.
Collapse
Affiliation(s)
| | - María J Lorite
- Dpto. Microbiología y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | - María Camacho
- IFAPA Centro Las Torres, Crta Sevilla-Cazalla Km 12, 2, 41200 Seville, Spain
| |
Collapse
|
4
|
Perry BJ, Ferguson S, Laugraud A, Wakelin SA, Reeve W, Ronson CW. Complete Genome Sequences of Trifolium spp. Inoculant Strains Rhizobium leguminosarum sv. trifolii TA1 and CC275e: Resources for Genomic Study of the Rhizobium- Trifolium Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:131-134. [PMID: 33021882 DOI: 10.1094/mpmi-08-20-0220-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rhizobium leguminosarum symbiovar trifolii strains TA1 and CC275e are nitrogen-fixing microsymbionts of Trifolium spp. and have been used as commercial inoculant strains for clovers in pastoral agriculture in Australia and New Zealand. Here we present the complete genome sequences of both strains, resolving their multipartite genome structures and allowing for future studies using genomic approaches.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Shaun Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Aurelie Laugraud
- AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Steve A Wakelin
- AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Wayne Reeve
- College of Science, Health, Engineering and Education, Murdoch University, Perth WA 6150, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01268-20. [PMID: 32651206 DOI: 10.1128/aem.01268-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts.IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.
Collapse
|
6
|
Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie van Leeuwenhoek 2017; 111:135-153. [DOI: 10.1007/s10482-017-0934-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
7
|
Wigley K, Wakelin SA, Moot DJ, Hammond S, Ridgway HJ. Measurements of carbon utilization by single bacterial species in sterile soil: insights into Rhizobium spp. J Appl Microbiol 2016; 121:495-505. [PMID: 27155348 DOI: 10.1111/jam.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
Abstract
AIM The aim of this work was to develop a tool to investigate the influence of soil factors on carbon utilization activity of single micro-organisms. METHODS AND RESULTS The assay for Rhizobium leguminosarum bv. trifolii in γ-irradiated soil, using the MicroResp(™) system, was optimized for sterility, incubation time, and moisture level. The optimized method was validated with experiments that assessed (i) differences in C utilization of different rhizobia strains and (ii) how this was affected by soil type. Carbon utilization differed among strains of the same species (and symbiovar), but some strains were more responsive to the soil environment than others. CONCLUSIONS This novel modification of the MicroResp(™) has enabled the scope of carbon-utilization patterns of single strains of bacteria, such as Rh. leguminosarum bv. trifolii, to be studied in soil. SIGNIFICANCE AND IMPACT OF THE STUDY The system is a new tool with applications in microbial ecology adaptable to the study of many culturable bacterial and fungal soil-borne taxa. It will allow measurement of a micro-organism's ability to utilize common C sources released in rhizosphere exudates to be measured in a physical soil background. This knowledge may improve selection efficiency and deployment of commercial microbial inoculants.
Collapse
Affiliation(s)
- K Wigley
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | - D J Moot
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - S Hammond
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - H J Ridgway
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
8
|
Delestre C, Laugraud A, Ridgway H, Ronson C, O'Callaghan M, Barrett B, Ballard R, Griffiths A, Young S, Blond C, Gerard E, Wakelin S. Genome sequence of the clover symbiont Rhizobium leguminosarum bv. trifolii strain CC275e. Stand Genomic Sci 2015; 10:121. [PMID: 26649149 PMCID: PMC4672485 DOI: 10.1186/s40793-015-0110-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii strain CC275e is a highly effective, N2-fixing microsymbiont of white clover (Trifolium repens L.). The bacterium has been widely used in both Australia and New Zealand as a clover seed inoculant and, as such, has delivered the equivalent of millions of dollars of nitrogen into these pastoral systems. R. leguminosarum strain CC275e is a rod-shaped, motile, Gram-negative, non-spore forming bacterium. The genome was sequenced on an Illumina MiSeq instrument using a 2 × 150 bp paired end library and assembled into 29 scaffolds. The genome size is 7,077,367 nucleotides, with a GC content of 60.9 %. The final, high-quality draft genome contains 6693 protein coding genes, close to 85 % of which were assigned to COG categories. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRXL00000000. The sequencing of this genome will enable identification of genetic traits associated with host compatibility and high N2 fixation characteristics in Rhizobium leguminosarum. The sequence will also be useful for development of strain-specific markers to assess factors associated with environmental fitness, competiveness for host nodule occupancy, and survival on legume seeds (New Zealand Ministry of Business, Innovation and Employment program, ‘Improving forage legume-rhizobia performance’ contract C10X1308 and DairyNZ Ltd.).
Collapse
Affiliation(s)
- Clément Delestre
- University of Bordeaux, IT Science, 351 Cours de la Libération, 33400 Talence, France
| | - Aurélie Laugraud
- AgResearch Ltd, Lincoln Campus, Private Bag 4749, Christchurch, 8140 New Zealand
| | - Hayley Ridgway
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Christchurch, New Zealand
| | - Clive Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Maureen O'Callaghan
- AgResearch Ltd, Lincoln Campus, Private Bag 4749, Christchurch, 8140 New Zealand
| | - Brent Barrett
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Ross Ballard
- South Australian Research and Development Institute, Urrbrae, South Australia Australia
| | - Andrew Griffiths
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Sandra Young
- AgResearch Ltd, Lincoln Campus, Private Bag 4749, Christchurch, 8140 New Zealand
| | - Celine Blond
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Christchurch, New Zealand
| | - Emily Gerard
- AgResearch Ltd, Lincoln Campus, Private Bag 4749, Christchurch, 8140 New Zealand
| | - Steve Wakelin
- AgResearch Ltd, Lincoln Campus, Private Bag 4749, Christchurch, 8140 New Zealand
| |
Collapse
|