1
|
Bullergahn VB, Menezes KMS, Veloso TGR, da Luz JMR, Castanheira LF, Pereira LL, da Silva MDCS. Diversity of potential nitrogen-fixing bacteria from rhizosphere of the Coffea arabica L. and Coffea canephora L. 3 Biotech 2024; 14:27. [PMID: 38173824 PMCID: PMC10758376 DOI: 10.1007/s13205-023-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Coffea arabica L. and Coffea canephora L. are coffee species most consumed and marketed in the world. The coffee crop requires a large amount of nitrogen, which shows the importance of knowledge of the population of nitrogen-fixing bacteria (NFB) from the rhizosphere of these crops. These microorganisms may help the reduction of nitrogen fertilizing. However, there is no production of NFB inoculum in the coffee. Therefore, our objective was to evaluate the diversity of potential nitrogen-fixing bacteria (PNFB) in the rhizosphere of C. arabica and C. canephora. The microbial DNA of the soil was extracted, amplified through PCR, and sequenced at the Illumina Miseq. platform. The PNFB prediction was performed using the program PICRUSt2. Three hundred and thirty-seven amplicon sequence variants (ASVs) were identified as PNFB in two coffee species. Xanthobacteraceae, Rhizobium multhospitiium, Rhizobium mesosinicum, and Bradyrhizobium sp. were detected in all samples and main components of the core microbiota of the coffee plant rhizosphere. Some ASVs are exclusive from one of the coffee farms, showing that the coffee specie cultivated may influence the PNFB communities. However, edaphoclimatic factors and soil chemical attributes can also influence the distribution of ASVs in coffee soil. In the C. canephora, the PNFB diversity was influenced by the altitude and the soil chemical attributes, while the altitude and the phosphorus content influenced the PNFB population in C. arabica. Our results are important to the understanding of the PNFB dynamic in coffee soil and for the agricultural inputs bioprospecting to coffee.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | | |
Collapse
|
2
|
Yu T, Nie J, Zang H, Zeng Z, Yang Y. Peanut-based Rotation Stabilized Diazotrophic Communities and Increased Subsequent Wheat Yield. MICROBIAL ECOLOGY 2023; 86:2447-2460. [PMID: 37296336 DOI: 10.1007/s00248-023-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The introduction of legumes into rotations can improve nitrogen use efficiency and crop yield; however, its microbial mechanism involved remains unclear. This study aimed to explore the temporal impact of peanut introduction on microorganisms related to nitrogen metabolism in rotation systems. In this study, the dynamics of diazotrophic communities in two crop seasons and wheat yields of two rotation systems: winter wheat - summer maize (WM) and spring peanut → winter wheat - summer maize (PWM) in the North China Plain were investigated. Our results showed that peanut introduction increased wheat yield and biomass by 11.6% (p < 0.05) and 8.9%, respectively. Lower Chao1 and Shannon indexes of the diazotrophic communities were detected in soils that sampling in June compared with those sampling in September, although no difference was found between WM and PWM. Principal co-ordinates analysis (PCoA) showed that rotation system significantly changed the diazotrophic community structures (PERMANOVA; p < 0.05). Compared with WM, the genera of Azotobacter, Skermanella, Azohydromonas, Rhodomicrobium, Azospirillum, Unclassified_f_Opitutaceae, and Unclassified_f_Rhodospirillaceae were significantly enriched (p < 0.05) in PWM. Furthermore, rotation system and sampling time significantly influenced soil properties, which significantly correlated with the top 15 genera in relative abundance. Partial least squares path modeling (PLS-PM) analysis further showed that the diazotrophic community diversity (alpha- and beta-diversity) and soil properties (pH, SOC and TN) significantly affected wheat yield. In conclusion, legume inclusion has the potential to stabilize diazotrophic community structure at the temporal scales and increase subsequent crop yield.
Collapse
Affiliation(s)
- Taobing Yu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jiangwen Nie
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Wang Q, Feng X, Liu Y, Li W, Cui W, Sun Y, Zhang S, Wang F, Xing B. Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132142. [PMID: 37515992 DOI: 10.1016/j.jhazmat.2023.132142] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Microplastics (MPs) occur and distribute widely in agroecosystems, posing a potential threat to soil-plant systems. However, little is known about their effects on legumes and N-fixing microbes. Here, we explored the effects of high-density polyethylene (HDPE), polystyrene (PS), and polylactic acid (PLA) on the growth of peanuts and soil N-fixing bacterial communities. All MPs treatments showed no phytotoxic effects on plant biomass, and PS and PLA even increased plant height, especially at the high dose. All MPs changed soil NO3--N and NH4+-N contents and the activities of urease and FDAse. Particularly, high-dose PLA decreased soil NO3--N content by 97% and increased soil urease activity by 104%. In most cases, MPs negatively affected plant N content, and high-dose PLA had the most pronounced effects. All MPs especially PLA changed soil N-fixing bacterial community structure. Symbiotic N-fixer Rhizoboales were greatly enriched by high-dose PLA, accompanied by the emergence of root nodulation, which may represent an adaptive strategy for peanuts to overcome N deficiency caused by PLA MPs pollution. Our findings indicate that MPs can change peanut-N fixing bacteria systems in a type- and dose-dependent manner, and biodegradable MPs may have more profound consequences for N biogeochemical cycling than traditional MPs.
Collapse
Affiliation(s)
- Quanlong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Xueying Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Nanetti E, Palladino G, Scicchitano D, Trapella G, Cinti N, Fabbrini M, Cozzi A, Accetta G, Tassini C, Iannaccone L, Candela M, Rampelli S. Composition and biodiversity of soil and root-associated microbiome in Vitis vinifera cultivar Lambrusco distinguish the microbial terroir of the Lambrusco DOC protected designation of origin area on a local scale. Front Microbiol 2023; 14:1108036. [PMID: 36910169 PMCID: PMC9992870 DOI: 10.3389/fmicb.2023.1108036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Wines produced from the same grape cultivars but in different locations possess distinctive qualities leading to different consumer's appreciation, preferences, and thus purchase choices. Here, we explore the possible importance of microbiomes at the soil-plant interface as a determinant of the terroir properties in grapevine production, which confer specific growth performances and wine chemo-sensory properties at the local scale. Methods In particular, we investigated the variation in microbial communities associated with the roots of Vitis vinifera cultivar Lambrusco, as well as with surrounding bulk soils, in different vineyards across the "Consorzio Tutela Lambrusco DOC" protected designation of origin area (PDO, Emilia Romagna, Italy), considering viticultural sites located both inside and outside the consortium in two different seasons (June and November 2021). Results According to our findings, rhizospheric and soil microbiomes show significant structural differences in relation to the sampling site, regardless of seasonality, while endophytic microbiomes seem to be completely unaffected by such variables. Furthermore, a deeper insight into the microbial terroir of PDO areas highlighted the presence of some rhizospheric microorganisms enriched inside the consortium and characterizing the PDO regardless of both sampling season and farming strategy. These include Bacillus, Paenibacillus, and Azospirillum, which are all well-known plant growth-promoting bacteria. Discussion Taken together, our results suggest a connection between soil and root microbiomes of V. vinifera cultivar Lambrusco and the local designation of origin, emphasizing the potential role of PDO-enriched plant growth-promoting bacteria in vine growing and final quality of the Lambrusco DOC wine.
Collapse
Affiliation(s)
- Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Nicolò Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Fabbrini
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alice Cozzi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Carlo Tassini
- Istituto Tecnico Statale "Ignazio Calvi", Finale Emilia, Italy
| | | | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Gao H, Li S, Wu F. Impact of Intercropping on the Diazotrophic Community in the Soils of Continuous Cucumber Cropping Systems. Front Microbiol 2021; 12:630302. [PMID: 33868191 PMCID: PMC8044418 DOI: 10.3389/fmicb.2021.630302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Diazotrophs are important soil components that help replenish biologically available nitrogen (N) in the soil and contribute to minimizing the use of inorganic N fertilizers in agricultural ecosystems. However, there is little understanding of how diazotrophs respond to intercropping and soil physicochemical properties in cucumber continuous cropping systems. In this study, using the nifH gene as a marker, we have examined the impacts of seven intercropping plants on diazotrophic community diversity and composition compared to a cucumber continuous cropping system during two cropping seasons. The results showed that intercropping increased the abundance of the nifH gene, which was negatively correlated with available phosphorous in the fall. Diazotrophic diversity and richness were higher in the rape-cucumber system than in the monoculture. Multivariate regression tree analysis revealed that the diversity of the diazotrophic communties was shaped mainly by soil moisture and available phosphorous. Skermanella were the dominant genera in all of the samples, which increased significantly in the mustard-cucumber system in the fall. There was no effect of intercropping on the structure of the diazotrophic community in this case. Non-metric multidimensional scaling analysis showed that cropping season had a greater effect than intercropping on the community structure of the diazotrophs. Overall, our results suggest that intercropping altered the abundance and diversity rather than the structure of the diazotrophic community, which may potentially affect the N fixation ability of continuous cropping systems.
Collapse
Affiliation(s)
- Huan Gao
- Department of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Sen Li
- Department of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Zou J, Yao Q, Liu J, Li Y, Song F, Liu X, Wang G. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China. PeerJ 2020; 8:e9550. [PMID: 32742810 PMCID: PMC7368428 DOI: 10.7717/peerj.9550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nitrogen-fixing microorganisms play important roles in N cycling. However, knowledge related to the changes in the diazotrophic community in response to cropping systems is still rudimentary. In this study, the nifH gene was used to reveal the abundance and community compositions of diazotrophs in the cropping systems of continuous cropping of corn (CC) and soybean (SS) and soybean-corn rotation for growing corn (CSC) and soybean (SCS) in a black soil of Northeast China. The results showed that the abundance of the nifH gene was significantly higher in cropping soybean than in cropping corn under the same cropping system, while remarkably increased in the rotation system under the same crop. The Shannon index in the CC treatment was significantly higher than that in the other treatments, but the OTU number and Chao1 index had no significant change among the four treatments. Bradyrhizobium japonicum was the dominant diazotrophic species, and its relative abundance was at the lowest value in the CC treatment. In contrast, Skermanella sp. had the highest relative abundance in the CC treatment. A PCoA showed that the diazotrophic communities were separated between different cropping systems, and the variation caused by continuous corn cropping was the largest. Among the tested soil properties, the soil available phosphorus was a primary factor in determining diazotrophic community compositions. Overall, the findings of this study highlighted that the diazotrophic communities in black soils are very sensitive to cropping systems.
Collapse
Affiliation(s)
- Jiaxun Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.,College of Life Science, Heilongjiang University, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Fuqiang Song
- College of Life Science, Heilongjiang University, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
7
|
Microbiological Investigation of the Space Dust Collected from the External Surfaces of the International Space Station. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00712-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Onori R, Marín M, Rodríguez-Sánchez B, Oliver C, Muñoz P, Bouza E, Alcalá L. First isolation of Skermanella aerolata from a human sample. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31:552-553. [PMID: 30364926 PMCID: PMC6254487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Raffaella Onori
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid
| | - Belén Rodríguez-Sánchez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid
| | - Cristina Oliver
- Department of Obstetrics and Gynecology, Hospital General Universitario Gregorio Marañón, Madrid
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid,CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Spain,Medicine Department, School of Medicine, Universidad Complutense de Madrid
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid,CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Spain,Medicine Department, School of Medicine, Universidad Complutense de Madrid
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid,CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Spain
| |
Collapse
|
9
|
Che R, Deng Y, Wang F, Wang W, Xu Z, Hao Y, Xue K, Zhang B, Tang L, Zhou H, Cui X. Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:997-1006. [PMID: 29929338 DOI: 10.1016/j.scitotenv.2018.05.238] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Biological nitrogen fixation, conducted by soil diazotrophs, is the primary nitrogen source for natural grasslands. However, the diazotrophs in grassland soils are still far from fully investigated. Particularly, their regional-scale distribution patterns have never been systematically examined. Here, soils (0-5 cm) were sampled from 54 grasslands on the Tibetan Plateau to examine the diazotroph abundance, diversity, and community composition, as well as their distribution patterns and driving factors. The diazotroph abundance was expressed as nifH gene copies, measured using real-time PCR. The diversity and community composition of diazotrophs were analyzed through MiSeq sequencing of nifH genes. The results showed that Cyanobacteria (47.94%) and Proteobacteria (45.20%) dominated the soil diazotroph communities. Most Cyanobacteria were classified as Nostocales which are main components of biological crusts. Rhizobiales, most of which were identified as potential symbiotic diazotrophs, were also abundant in approximately half of the soil samples. The soil diazotroph abundance, diversity, and community composition followed the distribution patterns in line with mean annual precipitation. Moreover, they also showed significant correlations with prokaryotic abundance, plant biomass, vegetation cover, soil pH values, and soil nutrient contents. Among these environmental factors, the soil moisture, organic carbon, available phosphorus, and inorganic nitrogen contents could be the main drivers of diazotroph distribution due to their strong correlations with diazotroph indices. These findings suggest that autotrophic and symbiotic diazotrophs are the predominant nitrogen fixers in Tibetan grassland soils, and highlight the key roles of water and nutrient availability in determining the soil diazotroph distribution on the Tibetan Plateau.
Collapse
Affiliation(s)
- Rongxiao Che
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Yongcui Deng
- Nanjing Normal University, Nanjing 210097, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Weijin Wang
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Xue
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Tang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Larvicidal potential of Skermanella sp. against rice leaf folder (Cnaphalocrosis medinalis Guenee) and pink stem borer (Sesamia inferens Walker). J Invertebr Pathol 2018; 157:74-79. [PMID: 30099012 DOI: 10.1016/j.jip.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022]
Abstract
Insect pests in the rice agroecosystem, particularly the leaf folder, Cnaphalocrosis medinalis (Guenee) and stem borer, Sesamia inferens (Walker), cause significant yield losses. These pests are generally managed by farmers by application of insecticides and a few biocontrol agents. As a component of integrated pest management, biocontrol agents play a dynamic role in pest control. Although diverse microbial communities are available in the rice ecosystem, bacterial genera such as Bacillus and Pseudomonas spp. are broadly used as biocontrol agents. Therefore, an attempt was made to identify other effective entomopathogenic bacteria to manage the above mentioned pests. In this study, the two entomopathogenic bacteria isolated from diseased pink stem borer (S. inferens Walker) larvae collected from rice fields were identified as Skermanella sp. (KX611462) and Serratia sp. (KX761232). The larvicidal activity of these two bacteria was evaluated against third instar larvae of C. medinalis and S. inferens in in vitro assays and on potted rice plants (Oryza sativa var. TN1). The results of this study demonstrated 50% (LC50) larval mortality of C. medinalis at 2.95 × 103 and 5.88 × 103 colony forming units (CFU) ml-1 for Skermanella sp. and Serratia sp., respectively, under in vitro conditions, 2.57 × 104 and 3.38 × 104 CFU ml-1, respectively, in whole plant assays. Similarly, the LC50 value for Skermanella sp. was 3.80 × 104 CFU ml-1 and Serratia sp. was 2.29 × 105 CFU ml-1 for S. inferens larvae. Our study reports the larvicidal activity of Skermanella sp. against C. medinalis and S. inferens.
Collapse
|
11
|
Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways. Appl Environ Microbiol 2016; 82:5482-95. [PMID: 27342551 DOI: 10.1128/aem.01375-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of "antimonotrophs."
Collapse
|