1
|
Pandey A, Humbert MV, Jackson A, Passey JL, Hampson DJ, Cleary DW, La Ragione RM, Christodoulides M. Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli. Microb Genom 2020; 6:mgen000470. [PMID: 33174833 PMCID: PMC8116685 DOI: 10.1099/mgen.0.000470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The enteric, pathogenic spirochaete Brachyspira pilosicoli colonizes and infects a variety of birds and mammals, including humans. However, there is a paucity of genomic data available for this organism. This study introduces 12 newly sequenced draft genome assemblies, boosting the cohort of examined isolates by fourfold and cataloguing the intraspecific genomic diversity of the organism more comprehensively. We used several in silico techniques to define a core genome of 1751 genes and qualitatively and quantitatively examined the intraspecific species boundary using phylogenetic analysis and average nucleotide identity, before contextualizing this diversity against other members of the genus Brachyspira. Our study revealed that an additional isolate that was unable to be species typed against any other Brachyspira lacked putative virulence factors present in all other isolates. Finally, we quantified that homologous recombination has as great an effect on the evolution of the core genome of the B. pilosicoli as random mutation (r/m=1.02). Comparative genomics has informed Brachyspira diversity, population structure, host specificity and virulence. The data presented here can be used to contribute to developing advanced screening methods, diagnostic assays and prophylactic vaccines against this zoonotic pathogen.
Collapse
Affiliation(s)
- Anish Pandey
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alexandra Jackson
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jade L. Passey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David W. Cleary
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Abstract
The 'colonic' spirochetes assigned to the genus Brachyspira are slow-growing anaerobic bacteria. The genus includes both pathogenic and non-pathogenic species, and these variously colonise the large intestines of different species of birds and animals, including humans. Scientific understanding of the physiology and molecular biology of Brachyspira spp. remains very limited compared with that of other pathogenic spirochetes, and there are few descriptions of successful genetic manipulations undertaken to investigate gene function. An important boost to knowledge occurred in 2009 when, for the first time, the whole genome sequence of a Brachyspira strain (Brachyspira hyodysenteriae strain WA1) was obtained. The genomics analysis provided a significant increase in knowledge: for example, a previously unknown ~36 Kb plasmid was discovered and metabolic pathways were constructed. The study also revealed likely acquisition of genes involved in transport and central metabolic functions from other enteric bacterial species. Four subsequent publications have provided a similarly detailed analysis of other Brachyspira genomes, but of these only two included more than one strain of a species (20 strains of B. hyodysenteriae in one and three strains of B. pilosicoli in the other). Since then, more Brachyspira genomes have been made publicly available, with the sequences of at least one representative of each of the nine officially recognised species deposited at public genome repositories. All species have a single circular chromosome varying in size from ~2.5 to 3.3 Mb, with a C + G content of around 27%. In this chapter, we summarise the current knowledge and present a preliminary comparative genomic analysis conducted on 56 strains covering the official Brachyspira species. Besides providing detailed genetic maps of the bacteria, this analysis has revealed gene island rearrangements, putative phenotypes (including antimicrobial drug resistance) and genetic mutation mechanisms that enable brachyspires to evolve and respond to stress. The application of Next-Generation Sequencing (NGS) to generate genomic data from many more Brachyspira species and strains increasing will improve our understanding of these enigmatic spirochetes.
Collapse
|
3
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Mirajkar NS, Phillips ND, La T, Hampson DJ, Gebhart CJ. Characterization and Recognition of Brachyspira hampsonii sp. nov., a Novel Intestinal Spirochete That Is Pathogenic to Pigs. J Clin Microbiol 2016; 54:2942-2949. [PMID: 27629903 PMCID: PMC5121383 DOI: 10.1128/jcm.01717-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/11/2016] [Indexed: 11/20/2022] Open
Abstract
Swine dysentery (SD) is a mucohemorrhagic colitis of swine classically caused by infection with the intestinal spirochete Brachyspira hyodysenteriae Since around 2007, cases of SD have occurred in North America associated with a different strongly beta-hemolytic spirochete that has been molecularly and phenotypically characterized and provisionally named "Brachyspira hampsonii." Despite increasing international interest, B. hampsonii is currently not recognized as a valid species. To support its recognition, we sequenced the genomes of strains NSH-16T, NSH-24, and P280/1, representing B. hampsonii genetic groups I, II, and III, respectively, and compared them with genomes of other valid Brachyspira species. The draft genome of strain NSH-16T has a DNA G+C content of 27.4% and an approximate size of 3.2 Mb. Genomic indices, including digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI), clearly differentiated B. hampsonii from other recognized Brachyspira species. Although discriminated genotypically, the three genetic groups are phenotypically similar. By electron microscopy, cells of different strains of B. hampsonii measure 5 to 10 μm by 0.28 to 0.34 μm, with one or two flat curves, and have 10 to 14 periplasmic flagella inserted at each cell end. Using a comprehensive evaluation of genotypic (gene comparisons and multilocus sequence typing and analysis), genomic (dDDH, ANI, and AAI) and phenotypic (hemolysis, biochemical profiles, protein spectra, antibiogram, and pathogenicity) properties, we classify Brachyspira hampsonii sp. nov. as a unique species with genetically diverse yet phenotypically similar genomovars (I, II, and III). We designate the type strain NSH-16 (= ATCC BAA-2463 = NCTC 13792).
Collapse
Affiliation(s)
- Nandita S Mirajkar
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Mushtaq M, Zubair S, Råsbäck T, Bongcam-Rudloff E, Jansson DS. Brachyspira suanatina sp. nov., an enteropathogenic intestinal spirochaete isolated from pigs and mallards: genomic and phenotypic characteristics. BMC Microbiol 2015; 15:208. [PMID: 26458507 PMCID: PMC4603578 DOI: 10.1186/s12866-015-0537-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background The genus Brachyspira currently encompasses seven valid species that colonize the intestines of mammals and birds. In a previous study a group of strongly haemolytic isolates from pigs and mallards was provisionally described as a new species within genus Brachyspira, “B. suanatina”, and enteropathogenic properties were demonstrated in a porcine challenge model. Methods In the current study characterization of B. suanatina was performed on the basis of cell morphology, growth characteristics, enzyme profiles, DNA-DNA hybridization (DDH) and whole genome comparisons. The draft genome sequence of B. suanatina strain AN4859/03 was determined and compared with the available genomes of all valid species of Brachyspira. Results According to morphological traits, growth characteristics and enzymatic profiles, B. suanatina was similar to the type strain of B. hyodysenteriae, but using the recommended threshold value of 70 % similarity by DDH it did not belong to any of the recognized Brachyspira species (range 16–64 % similarity). This was further supported by average nucleotide identity values. Phylogenetic analysis performed using housekeeping genes and core genomes of all valid Brachyspira sp. and “B. hampsonii” revealed that B. suanatina and B. intermedia formed a clade distinct from B. hyodysenteriae. By comparing the genomes of the three closely related species B. intermedia, B. hyodysenteriae and B. suanatina similar profiles of general genomic features and distribution of genes in different functional categories were obtained. However, the genome size of B. hyodysenteriae was smallest among the species, suggesting the possibility of reductive evolution in the divergence of this species. A bacteriophage region and a putative plasmid sequence were also found in the genome of B. suanatina strain AN4859/03. Conclusions The results of our study suggest that despite being similar to B. hyodysenteriae phenotypically, B. suanatina should be regarded as a separate species based on its genetic characteristics. Based on characteristics presented in this report we propose that strains AN4859/03, AN1681:1/04, AN2384/04 and Dk12570-2 from pigs in Sweden and Denmark, and strains AN3949:2/02 and AN1418:2/01 isolated from mallards in Sweden, represent a unique species within genus Brachyspira. For this new species we propose the name B. suanatina for which the type strain is AN4859/03T (=ATCC® BAA-2592™ = DSM 100974T). Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0537-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mamoona Mushtaq
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Saima Zubair
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Therese Råsbäck
- Department of Bacteriology, National Veterinary Institute (SVA), SE751 89, Uppsala, Sweden.
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), SE750 07, Uppsala, Sweden.
| | - Désirée S Jansson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE751 89, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE750 07, Uppsala, Sweden.
| |
Collapse
|
6
|
Mahu M, de Jong E, De Pauw N, Vande Maele L, Vandenbroucke V, Vandersmissen T, Miry C, Pasmans F, Haesebrouck F, Martel A, Boyen F. First isolation of “Brachyspira hampsonii”
from pigs in Europe. Vet Rec 2014; 174:47. [DOI: 10.1136/vr.101868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Mahu
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - E. de Jong
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - N. De Pauw
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - L. Vande Maele
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
- Institute for Agricultural and Fisheries Research (ILVO); Brusselsesteenweg 370 Melle B-9090 Belgium
| | - V. Vandenbroucke
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - T. Vandersmissen
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - C. Miry
- Animal Health Care Flanders; Deinse Horsweg 1 Drongen B-9031 Belgium
| | - F. Pasmans
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - F. Haesebrouck
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - A. Martel
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - F. Boyen
- Department of Pathology; Bacteriology and Poultry Diseases; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| |
Collapse
|
7
|
Mappley LJ, La Ragione RM, Woodward MJ. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 2013; 168:245-60. [PMID: 24355534 DOI: 10.1016/j.vetmic.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £ 18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK.
| | - Roberto M La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
| |
Collapse
|
8
|
Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 2013; 4:217. [PMID: 23908650 PMCID: PMC3726837 DOI: 10.3389/fmicb.2013.00217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/11/2013] [Indexed: 12/03/2022] Open
Abstract
The Spirochaetes species cause many important diseases including syphilis and Lyme disease. Except for their containing a distinctive endoflagella, no other molecular or biochemical characteristics are presently known that are specific for either all Spirochaetes or its different families. We report detailed comparative and phylogenomic analyses of protein sequences from Spirochaetes genomes to understand their evolutionary relationships and to identify molecular signatures for this group. These studies have identified 38 conserved signature indels (CSIs) that are specific for either all members of the phylum Spirochaetes or its different main clades. Of these CSIs, a 3 aa insert in the FlgC protein is uniquely shared by all sequenced Spirochaetes providing a molecular marker for this phylum. Seven, six, and five CSIs in different proteins are specific for members of the families Spirochaetaceae, Brachyspiraceae, and Leptospiraceae, respectively. Of the 19 other identified CSIs, 3 are uniquely shared by members of the genera Sphaerochaeta, Spirochaeta, and Treponema, whereas 16 others are specific for the genus Borrelia. A monophyletic grouping of the genera Sphaerochaeta, Spirochaeta, and Treponema distinct from the genus Borrelia is also strongly supported by phylogenetic trees based upon concatenated sequences of 22 conserved proteins. The molecular markers described here provide novel and more definitive means for identification and demarcation of different main groups of Spirochaetes. To accommodate the extensive genetic diversity of the Spirochaetes as revealed by different CSIs and phylogenetic analyses, it is proposed that the four families of this phylum should be elevated to the order level taxonomic ranks (viz. Spirochaetales, Brevinematales ord. nov., Brachyspiriales ord. nov., and Leptospiriales ord. nov.). It is further proposed that the genera Borrelia and Cristispira be transferred to a new family Borreliaceae fam. nov. within the order Spirochaetales.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
9
|
Huntemann M, Stackebrandt E, Held B, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Rohde M, Gronow S, Göker M, Detter JC, Bristow J, Eisen JA, Markowitz V, Woyke T, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055(T)). Stand Genomic Sci 2013; 8:177-87. [PMID: 23991250 PMCID: PMC3746420 DOI: 10.4056/sigs.3637201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell envelope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is associated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the first genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the G enomic E ncyclopedia of Bacteria and Archaea project.
Collapse
|
10
|
Stackebrandt E, Chertkov O, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Land M, Pan C, Rohde M, Gronow S, Göker M, Detter JC, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Woyke T, Kyrpides NC, Klenk HP. Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (H(T)), and emendation of the species Turneriella parva. Stand Genomic Sci 2013; 8:228-38. [PMID: 23991255 PMCID: PMC3746428 DOI: 10.4056/sigs.3617113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13(th) member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the G enomic E ncyclopedia of Bacteria and Archaea project.
Collapse
Affiliation(s)
- Erko Stackebrandt
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liolos K, Abt B, Scheuner C, Teshima H, Held B, Lapidus A, Nolan M, Lucas S, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Land M, Rohde M, Tindall BJ, Detter JC, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Woyke T, Klenk HP, Kyrpides NC. Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692(T)) from the alkaline Lake Magadi in the East African Rift. Stand Genomic Sci 2013; 8:165-76. [PMID: 23991249 PMCID: PMC3746417 DOI: 10.4056/sigs.3607108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692(T), was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692(T) with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
Collapse
|
12
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
13
|
Burrough E, Strait E, Kinyon J, Bower L, Madson D, Schwartz K, Frana T, Songer JG. Comparison of atypical Brachyspira spp. clinical isolates and classic strains in a mouse model of swine dysentery. Vet Microbiol 2012; 160:387-94. [DOI: 10.1016/j.vetmic.2012.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022]
|
14
|
Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J, Turner AK, Bellgard MI, La T, Phillips ND, La Ragione RM, Hampson DJ. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454. [PMID: 22947175 PMCID: PMC3532143 DOI: 10.1186/1471-2164-13-454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Reading University, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Demonstration of genes encoding virulence and virulence life-style factors in Brachyspira spp. isolates from pigs. Vet Microbiol 2011; 155:438-43. [PMID: 22047713 DOI: 10.1016/j.vetmic.2011.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022]
Abstract
The distribution of many genes encoding virulence and virulence life-style (VL-S) factors in Brachyspira (B.) hyodysenteriae and other Brachyspira species are largely unknown. Their knowledge is essential e.g. for the improvement of diagnostic methods targeting the detection and differentiation of the species. Thus 121 German Brachyspira field isolates from diarrhoeic pigs were characterized down to the species level by restriction fragment length polymorphism analysis of the nox gene and subsequently subjected to polymerase chain reaction detecting VL-S genes for inner (clpX) and outer membrane proteins (OMPs: bhlp16, bhlp17.6, bhlp29.7, bhmp39f, bhmp39h), hemolysins (hlyA/ACP, tlyA), iron metabolism (ftnA, bitC), and aerotolerance (nox). For comparison, B. hyodysenteriae reference strains from the USA (n=7) and Australia (2) were used. Of all genes tested only nox was detected in all isolates. The simultaneous presence of both the tlyA and hlyA/ACP was restricted to the species B. hyodysenteriae. The hlyA infrequently occurred also in weakly hemolytic Brachyspira. Similarly to tlyA and hlyA all B. hyodysenteriae strains contained the ferritin gene ftnA which was also found in two Brachyspira intermedia isolates. OMP encoding genes were present in B. hyodysenteriae field isolates in rates of 0% (bhlp17.6, bhmp39h), 58.1% (bhlp29.7), and 97.3% (bhmp39f). Since the study revealed a high genetic heterogeneity among German B. hyodysenteriae field isolates differentiating them from USA as well as Australian strains, targets for diagnostic PCR were limited to the nox gene (genus specific PCR) as well as to the species specific nox(hyo) gene and the combination of hlyA and tlyA which allow to specifically detect B. hyodysenteriae.
Collapse
|
16
|
Håfström T, Jansson DS, Segerman B. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer. BMC Genomics 2011; 12:395. [PMID: 21816042 PMCID: PMC3163572 DOI: 10.1186/1471-2164-12-395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism.
Collapse
Affiliation(s)
- Therese Håfström
- Department of Bacteriology, National Veterinary Institute (SVA), SE 751 89 Uppsala, Sweden
| | | | | |
Collapse
|