1
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
2
|
Berger MB, Walker AR, Vázquez-Montelongo EA, Cisneros GA. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Phys Chem Chem Phys 2021; 23:22227-22240. [PMID: 34586107 PMCID: PMC8516722 DOI: 10.1039/d1cp03800a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA alkylation is used as the key epigenetic mark in eukaryotes, however, most alkylation in DNA can result in deleterious effects. Therefore, this process needs to be tightly regulated. The enzymes of the AlkB and Ten-Eleven Translocation (TET) families are members of the Fe and alpha-ketoglutarate-dependent superfamily of enzymes that are tasked with dealkylating DNA and RNA in cells. Members of these families span all species and are an integral part of transcriptional regulation. While both families catalyze oxidative dealkylation of various bases, each has specific preference for alkylated base type as well as distinct catalytic mechanisms. This perspective aims to provide an overview of computational work carried out to investigate several members of these enzyme families including AlkB, ALKB Homolog 2, ALKB Homolog 3 and Ten-Eleven Translocate 2. Insights into structural details, mutagenesis studies, reaction path analysis, electronic structure features in the active site, and substrate preferences are presented and discussed.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, USA
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
3
|
DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Int J Mol Sci 2021; 22:ijms221910540. [PMID: 34638881 PMCID: PMC8508711 DOI: 10.3390/ijms221910540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Site-specific DNA methylation plays an important role in epigenetic regulation of gene expression. Chemical methylation of DNA, including the formation of various methylated nitrogenous bases, leads to the formation of genotoxic modifications that impair DNA functions. Despite the fact that different pathways give rise to methyl groups in DNA, the main pathway for their removal is oxidative demethylation, which is catalyzed by nonheme Fe(II)/α-ketoglutarate–dependent DNA dioxygenases. DNA dioxygenases share a common catalytic mechanism of the oxidation of the alkyl groups on nitrogenous bases in nucleic acids. This review presents generalized data on the catalytic mechanism of action of DNA dioxygenases and on the participation of typical representatives of this superfamily, such as prokaryotic enzyme AlkB and eukaryotic enzymes ALKBH1–8 and TET1–3, in both processes of direct repair of alkylated DNA adducts and in the removal of an epigenetic mark (5-methylcytosine).
Collapse
|
4
|
Van Deuren V, Plessers S, Robben J. Structural determinants of nucleobase modification recognition in the AlkB family of dioxygenases. DNA Repair (Amst) 2020; 96:102995. [PMID: 33069898 DOI: 10.1016/j.dnarep.2020.102995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023]
Abstract
Iron-dependent dioxygenases of the AlkB protein family found in most organisms throughout the tree of life play a major role in oxidative dealkylation processes. Many of these enzymes have attracted the attention of researchers across different fields and have been subjected to thorough biochemical characterization because of their link to human health and disease. For example, several mammalian AlkB homologues are involved in the direct reversal of alkylation damage in DNA, while others have been shown to play a regulatory role in epigenetic or epitranscriptomic nucleic acid methylation or in post-translational modifications such as acetylation of actin filaments. These studies show that that divergence in amino acid sequence and structure leads to different characteristics and substrate specificities. In this review, we aim to summarize current insights in the structural features involved in the substrate selection of AlkB homologues, with focus on nucleic acid interactions.
Collapse
Affiliation(s)
- V Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - S Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - J Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium.
| |
Collapse
|
5
|
Lenz SAP, Li D, Wetmore SD. Insights into the Direct Oxidative Repair of Etheno Lesions: MD and QM/MM Study on the Substrate Scope of ALKBH2 and AlkB. DNA Repair (Amst) 2020; 96:102944. [PMID: 33161373 DOI: 10.1016/j.dnarep.2020.102944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023]
Abstract
E. coli AlkB and human ALKBH2 belong to the AlkB family enzymes, which contain several α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases that repair alkylated DNA. Specifically, the AlkB enzymes catalyze decarboxylation of α-KG to generate a high-valent Fe(IV)-oxo species that oxidizes alkyl groups on DNA adducts. AlkB and ALKBH2 have been reported to differentially repair select etheno adducts, with preferences for 1,N6-ethenoadenine (1,N6-εA) and 3,N4-ethenocytosine (3,N4-εC) over 1,N2-ethenoguanine (1,N2-εG). However, N2,3-ethenoguanine (N2,3-εG), the most common etheno adduct, is not repaired by the AlkB enzymes. Unfortunately, a structural understanding of the differential activity of E. coli AlkB and human ALKBH2 is lacking due to challenges acquiring atomistic details for a range of substrates using experiments. This study uses both molecular dynamics (MD) simulations and ONIOM(QM:MM) calculations to determine how the active site changes upon binding each etheno adduct and characterizes the corresponding catalytic impacts. Our data reveal that the preferred etheno substrates (1,N6-εA and 3,N4-εC) form favorable interactions with catalytic residues that situate the lesion near the Fe(IV)-oxo species and permit efficient oxidation. In contrast, although the damage remains correctly aligned with respect to the Fe(IV)-oxo moiety, repair of 1,N2-εG is mitigated by increased solvation of the active site and a larger distance between Fe(IV)-oxo and the aberrant carbons. Binding of non-substrate N2,3-εG in the active site disrupts key DNA-enzyme interactions, and positions the aberrant carbon atoms even further from the Fe(IV)-oxo species, leading to prohibitively high barriers for oxidative catalysis. Overall, our calculations provide the first structural insight required to rationalize the experimentally-reported substrate specificities of AlkB and ALKBH2 and thereby highlight the roles of several active site residues in the repair of etheno adducts that directly correlates with available experimental data. These proposed catalytic strategies can likely be generalized to other α-KG/Fe(II)-dependent dioxygenases that play similar critical biological roles, including epigenetic and post-translational regulation.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
6
|
Tang Q, Cai A, Bian K, Chen F, Delaney JC, Adusumalli S, Bach AC, Akhlaghi F, Cho BP, Li D. Characterization of Byproducts from Chemical Syntheses of Oligonucleotides Containing 1-Methyladenine and 3-Methylcytosine. ACS OMEGA 2017; 2:8205-8212. [PMID: 29214236 PMCID: PMC5709782 DOI: 10.1021/acsomega.7b01482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Oligonucleotides serve as important tools for biological, chemical, and medical research. The preparation of oligonucleotides through automated solid-phase synthesis is well-established. However, identification of byproducts generated from DNA synthesis, especially from oligonucleotides containing site-specific modifications, is sometimes challenging. Typical high-performance liquid chromatography (HPLC), mass spectrometry (MS), and gel electrophoresis methods alone are not sufficient for characterizing unexpected byproducts, especially for those having identical or very similar molecular weight (MW) to the products. We used a rigorous quality control procedure to characterize byproducts generated during oligonucleotide syntheses: (1) purify oligonucleotides by different HPLC systems; (2) determine exact MW by high-resolution MS; (3) locate modification position by MS/MS or exonuclease digestion with matrix-assisted laser desorption ionization-time of flight analysis; and (4) conduct, where applicable, enzymatic assays. We applied these steps to characterize byproducts in the syntheses of oligonucleotides containing biologically important methyl DNA adducts 1-methyladenine (m1A) and 3-methylcytosine (m3C). In m1A synthesis, we differentiated a regioisomeric byproduct 6-methyladenine, which possesses a MW identical to uncharged m1A. As for m3C, we identified a deamination byproduct 3-methyluracil, which is only 1 Da greater than uncharged m3C in the ∼4900 Da context. The detection of these byproducts would be very challenging if the abovementioned procedure was not adopted.
Collapse
Affiliation(s)
- Qi Tang
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Ang Cai
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Fangyi Chen
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - James C. Delaney
- Visterra
Inc., One Kendall Square, Cambridge, Massachusetts 02139, United States
| | - Sravani Adusumalli
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Alvin C. Bach
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Fatemeh Akhlaghi
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Bongsup P. Cho
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department
of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Chen F, Bian K, Tang Q, Fedeles BI, Singh V, Humulock ZT, Essigmann JM, Li D. Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chem Res Toxicol 2017; 30:1102-1110. [PMID: 28269980 DOI: 10.1021/acs.chemrestox.7b00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cancer-associated mutations often lead to perturbed cellular energy metabolism and accumulation of potentially harmful oncometabolites. One example is the chiral molecule 2-hydroxyglutarate (2HG); its two stereoisomers (d- and l-2HG) have been found at abnormally high concentrations in tumors featuring anomalous metabolic pathways. 2HG has been demonstrated to competitively inhibit several α-ketoglutarate (αKG)- and non-heme iron-dependent dioxygenases, including some of the AlkB family DNA repair enzymes, such as ALKBH2 and ALKBH3. However, previous studies have only provided the IC50 values of d-2HG on the enzymes, and the results have not been correlated to physiologically relevant concentrations of 2HG and αKG in cancer cells. In this work, we performed detailed kinetic analyses of DNA repair reactions catalyzed by ALKBH2, ALKBH3, and the bacterial AlkB in the presence of d- and l-2HG in both double- and single-stranded DNA contexts. We determined the kinetic parameters of inhibition, including kcat, KM, and Ki. We also correlated the relative concentrations of 2HG and αKG previously measured in tumor cells with the inhibitory effect of 2HG on the AlkB family enzymes. Both d- and l-2HG significantly inhibited the human DNA repair enzymes ALKBH2 and ALKBH3 at pathologically relevant concentrations (73-88% for d-2HG and 31-58% for l-2HG inhibition). This work provides a new perspective that the elevation of the d- or l-2HG concentration in cancer cells may contribute to an increased mutation rate by inhibiting the DNA repair performed by the AlkB family enzymes and thus exacerbate the genesis and progression of tumors.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vipender Singh
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Zachary T Humulock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 2016; 35:2104-2119. [PMID: 27497299 PMCID: PMC5048346 DOI: 10.15252/embj.201694885] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial gene expression uses a non‐universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt‐)tRNAMet mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt‐tRNAMet to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m5C34 of mt‐tRNAMet to generate an f5C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m5C34 mt‐tRNAMet in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt‐tRNAMet function. Together, our data reveal how modifications in mt‐tRNAMet are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNAMet to recognise the different codons encoding methionine.
Collapse
Affiliation(s)
- Sara Haag
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ahmed S Warda
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Charlotte Blessing
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Benedikt Hübner
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jan Seikowski
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Peter Rehling
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
9
|
You C, Wang P, Nay SL, Wang J, Dai X, O’Connor TR, Wang Y. Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions. ACS Chem Biol 2016; 11:1332-8. [PMID: 26930515 DOI: 10.1021/acschembio.6b00085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Environmental and endogenous genotoxic agents can result in a variety of alkylated and carboxymethylated DNA lesions, including N3-ethylthymidine (N3-EtdT), O(2)-EtdT, and O(4)-EtdT as well as N3-carboxymethylthymidine (N3-CMdT) and O(4)-CMdT. By using nonreplicative double-stranded vectors harboring a site-specifically incorporated DNA lesion, we assessed the potential roles of alkyladenine DNA glycosylase (Aag); alkylation repair protein B homologue 2 (Alkbh2); or Alkbh3 in modulating the effects of N3-EtdT, O(2)-EtdT, O(4)-EtdT, N3-CMdT, or O(4)-CMdT on DNA transcription in mammalian cells. We found that the depletion of Aag did not significantly change the transcriptional inhibitory or mutagenic properties of all five examined lesions, suggesting a negligible role of Aag in the repair of these DNA adducts in mammalian cells. In addition, our results revealed that N3-EtdT, but not other lesions, could be repaired by Alkbh2 and Alkbh3 in mammalian cells. Furthermore, we demonstrated the direct reversal of N3-EtdT by purified human Alkbh2 protein in vitro. These findings provided important new insights into the repair of the carboxymethylated and alkylated thymidine lesions in mammalian cells.
Collapse
Affiliation(s)
- Changjun You
- Department
of Chemistry, University of California, Riverside, California, United States
| | - Pengcheng Wang
- Environmental
Toxicology Graduate Program, University of California, Riverside, California, United States
| | - Stephanie L. Nay
- Department
of Cancer Biology, Beckman Research Institute, Duarte, California, United States
| | - Jianshuang Wang
- Department
of Chemistry, University of California, Riverside, California, United States
| | - Xiaoxia Dai
- Department
of Chemistry, University of California, Riverside, California, United States
| | - Timothy R. O’Connor
- Department
of Cancer Biology, Beckman Research Institute, Duarte, California, United States
| | - Yinsheng Wang
- Department
of Chemistry, University of California, Riverside, California, United States
- Environmental
Toxicology Graduate Program, University of California, Riverside, California, United States
| |
Collapse
|
10
|
Chen F, Tang Q, Bian K, Humulock ZT, Yang X, Jost M, Drennan CL, Essigmann JM, Li D. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chem Res Toxicol 2016; 29:687-93. [PMID: 26919079 DOI: 10.1021/acs.chemrestox.5b00522] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AlkB protein is a repair enzyme that uses an α-ketoglutarate/Fe(II)-dependent mechanism to repair alkyl DNA adducts. AlkB has been reported to repair highly susceptible substrates, such as 1-methyladenine and 3-methylcytosine, more efficiently in ss-DNA than in ds-DNA. Here, we tested the repair of weaker AlkB substrates 1-methylguanine and 3-methylthymine and found that AlkB prefers to repair them in ds-DNA. We also discovered that AlkB and its human homologues, ABH2 and ABH3, are able to repair the aforementioned adducts when the adduct is present in a mismatched base pair. These observations demonstrate the strong adaptability of AlkB toward repairing various adducts in different environments.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Zachary T Humulock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Xuedong Yang
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
11
|
Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015; 290:20734-20742. [PMID: 26152727 DOI: 10.1074/jbc.r115.656462] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vipender Singh
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James C Delaney
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Deyu Li
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - John M Essigmann
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
12
|
Müller TA, Hausinger RP. AlkB and Its Homologues – DNA Repair and Beyond. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AlkB is an Fe(ii)/2-oxoglutarate-dependent dioxygenase that is part of the adaptive response to alkylating agents in Escherichia coli. AlkB hydroxylates a wide variety of alkylated DNA bases producing unstable intermediates which decompose to restore the non-alkylated bases. Homologues exist in other bacteria, metazoa (e.g. nine in humans), plants and viruses, but not in archaea, with many catalysing the same oxidative demethylation reactions as for AlkB. The mammalian enzymes Alkbh2 and Alkbh3 catalyse direct DNA repair, Alkbh5 and FTO (Alkbh9) are RNA demethylases, and Alkbh8 is used to synthesize a tRNA, while the remaining mammalian homologues have alternative functions. Alkbh1 is an apurinic/apyrimidinic lyase in addition to exhibiting demethylase activities, but no clear role for the Alkbh1 protein has emerged. Alkbh4 is involved in cell division and potentially demethylates actin, whereas the mitochondrial homologue Alkbh7 has a role in obesity; however, no enzymatic activity has been linked to Alkbh4 or Alkbh7. Here, we discuss AlkB as the ‘archetype’ of this class of hydroxylases, compare it to Alkbh2 and Alkbh3, and then briefly review the diverse (and largely unknown) functions of Alkbh1, Alkbh4, Alkbh6 and Alkbh7. Alkbh5, Alkbh8 and Alkbh9 (FTO) are described separately.
Collapse
Affiliation(s)
- Tina A. Müller
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
13
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Ye Fu
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Chuan He
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
14
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
15
|
Li D, Fedeles BI, Shrivastav N, Delaney JC, Yang X, Wong C, Drennan CL, Essigmann JM. Removal of N-alkyl modifications from N(2)-alkylguanine and N(4)-alkylcytosine in DNA by the adaptive response protein AlkB. Chem Res Toxicol 2013; 26:1182-7. [PMID: 23773213 PMCID: PMC3748507 DOI: 10.1021/tx400096m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
AlkB enzyme is an Fe(II)- and α-ketoglutarate-dependent
dioxygenase that repairs DNA alkyl lesions by a direct reversal of
damage mechanism as part of the adaptive response in E. coli. The reported substrate scope of AlkB includes simple DNA alkyl
adducts, such as 1-methyladenine, 3-methylcytosine, 3-ethylcytosine,
1-methylguanine, 3-methylthymine, and N6-methyladenine, as well as more complex DNA adducts, such as 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 1,N6-ethanoadenine.
Previous studies have revealed, in a piecemeal way, that AlkB has
an impressive repertoire of substrates. The present study makes two
additions to this list, showing that alkyl adducts on the N2 position of guanine and N4 position of cytosine are also substrates for AlkB. Using
high resolution ESI-TOF mass spectrometry, we show that AlkB has the
biochemical capability to repair in vitroN2-methylguanine, N2-ethylguanine, N2-furan-2-yl-methylguanine, N2-tetrahydrofuran-2-yl-methylguanine, and N4-methylcytosine in ssDNA but not in dsDNA.
When viewed together with previous work, the experimental data herein
demonstrate that AlkB is able to repair all simple N-alkyl adducts occurring at the Watson–Crick base
pairing interface of the four DNA bases, confirming AlkB as a versatile
gatekeeper of genomic integrity under alkylation stress.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Macovei A, Gill SS, Tuteja N. microRNAs as promising tools for improving stress tolerance in rice. PLANT SIGNALING & BEHAVIOR 2012; 7:1296-301. [PMID: 22902689 PMCID: PMC3493417 DOI: 10.4161/psb.21586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rice (Oryza sativa) represents one of the most important food crops in the world, since it feeds more than two billion people. The increased rice production can play significant roles in upgrading the economic status of countries like India and China. A great deal of research has been carried out in the recent past on the molecular biology, genomics and biotechnology of rice. By employing recombinant DNA technology, remarkable progress had been made towards production of rice plants with increase yield, improved nutritional quality and resistance to various diseases. Under these circumstances, the study of microRNAs can contribute to new discoveries in this field. The miRNAs are assign to modulate gene expression at the post-transcriptional level. They are small, non-coding, single stranded RNAs that are abundantly found in prokaryotic and eukaryotic cells and can trigger translational repression or gene silencing by binding to complementary sequences on target mRNA transcripts. In the recent years, miRNAs have been reported to control a variety of biological processes, such as plant development, differentiation, signal transduction or stress responses. The present review provides an up-date on microRNAs and their involvement in the stress response in rice. A section is specifically dedicated to the genetic engineering perspectives regarding the miRNAs applications in rice tolerance to stress conditions.
Collapse
Affiliation(s)
- Anca Macovei
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana, India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Correspondence to: Narendra Tuteja,
| |
Collapse
|
17
|
Li D, Delaney JC, Page CM, Yang X, Chen AS, Wong C, Drennan CL, Essigmann JM. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB. J Am Chem Soc 2012; 134:8896-901. [PMID: 22512456 PMCID: PMC3363417 DOI: 10.1021/ja3010094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|