1
|
Mathimaran A, Nagarajan H, Mathimaran A, Huang YC, Chen CJ, Vetrivel U, Jeyaraman J. Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches. Int J Biol Macromol 2024; 276:133977. [PMID: 39029846 DOI: 10.1016/j.ijbiomac.2024.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.
Collapse
Affiliation(s)
- Amala Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ahila Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
Kumar R, R R, Diwakar V, Khan N, Kumar Meghwanshi G, Garg P. Structural-functional analysis of drug target aspartate semialdehyde dehydrogenase. Drug Discov Today 2024; 29:103908. [PMID: 38301800 DOI: 10.1016/j.drudis.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme in the biosynthesis of essential amino acids in microorganisms and some plants. Inhibition of ASADHs can be a potential drug target for developing novel antimicrobial and herbicidal compounds. This review covers up-to-date information about sequence diversity, ligand/inhibitor-bound 3D structures, potential inhibitors, and key pharmacophoric features of ASADH useful in designing novel and target-specific inhibitors of ASADH. Most reported ASADH inhibitors have two highly electronegative functional groups that interact with two key arginyl residues present in the active site of ASADHs. The structural information, active site binding modes, and key interactions between the enzyme and inhibitors serve as the basis for designing new and potent inhibitors against the ASADH family.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Rajkumar R
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Vineet Diwakar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Nazam Khan
- Clinical Laboratory Science Department, Applied Medical Science College, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
3
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
4
|
Sharma S, Jayasinghe YP, Mishra NK, Orimoloye MO, Wong TY, Dalluge JJ, Ronning DR, Aldrich CC. Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase. ACS Infect Dis 2023; 9:540-553. [PMID: 36753622 DOI: 10.1021/acsinfecdis.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Neeraj Kumar Mishra
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Chaudhary D, Singh A, Marzuki M, Ghosh A, Kidwai S, Gosain TP, Chawla K, Gupta SK, Agarwal N, Saha S, Kumar Y, Thakur KG, Singhal A, Singh R. Identification of small molecules targeting homoserine acetyl transferase from Mycobacterium tuberculosis and Staphylococcus aureus. Sci Rep 2022; 12:13801. [PMID: 35963878 PMCID: PMC9376091 DOI: 10.1038/s41598-022-16468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.
Collapse
Affiliation(s)
- Deepika Chaudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avantika Singh
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mardiana Marzuki
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Saqib Kidwai
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Kiran Chawla
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.,Singapore Immunology Network (SIgN), (A*STAR), Singapore, 138648, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India. .,Tuberculosis Research Laboratory, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, India.
| |
Collapse
|
6
|
Yang R, Cao W, Liu S, Li Q, Sun Y, Liang C, Ren W, Liu Y, Meng J, Li C. Evaluation of a novel inhibitor of aspartate semialdehyde dehydrogenase as a potent antitubercular agent against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2022; 75:333-340. [DOI: 10.1038/s41429-022-00520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
|
7
|
Chaton CT, Rodriguez ES, Reed RW, Li J, Kenner CW, Korotkov KV. Structural analysis of mycobacterial homoserine transacetylases central to methionine biosynthesis reveals druggable active site. Sci Rep 2019; 9:20267. [PMID: 31889085 PMCID: PMC6937278 DOI: 10.1038/s41598-019-56722-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of the world’s most deadly infectious disease. Efforts are underway to target the methionine biosynthesis pathway, as it is not part of the host metabolism. The homoserine transacetylase MetX converts l-homoserine to O-acetyl-l-homoserine at the committed step of this pathway. In order to facilitate structure-based drug design, we determined the high-resolution crystal structures of three MetX proteins, including M. tuberculosis (MtMetX), Mycolicibacterium abscessus (MaMetX), and Mycolicibacterium hassiacum (MhMetX). A comparison of homoserine transacetylases from other bacterial and fungal species reveals a high degree of structural conservation amongst the enzymes. Utilizing homologous structures with bound cofactors, we analyzed the potential ligandability of MetX. The deep active-site tunnel surrounding the catalytic serine yielded many consensus clusters during mapping, suggesting that MtMetX is highly druggable.
Collapse
Affiliation(s)
- Catherine T Chaton
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Emily S Rodriguez
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.,Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH, 43210, USA
| | - Robert W Reed
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.,Division of Regulatory Services, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jian Li
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.,Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Cameron W Kenner
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.,Georgetown College, Georgetown, KY, 40324, USA
| | - Konstantin V Korotkov
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Meshram RJ, Goundge MB, Kolte BS, Gacche RN. An in silico approach in identification of drug targets in Leishmania: A subtractive genomic and metabolic simulation analysis. Parasitol Int 2018; 69:59-70. [PMID: 30503238 DOI: 10.1016/j.parint.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
Leishmaniasis is one of the major health issue in developing countries. The current therapeutic regimen for this disease is less effective with lot of adverse effects thereby warranting an urgent need to develop not only new and selective drug candidates but also identification of effective drug targets. Here we present subtractive genomics procedure for identification of putative drug targets in Leishmania. Comprehensive druggability analysis has been carried out in the current work for identified metabolic pathways and drug targets. We also demonstrate effective metabolic simulation methodology to pinpoint putative drug targets in threonine biosynthesis pathway. Metabolic simulation data from the current study indicate that decreasing flux through homoserine kinase reaction can be considered as a good therapeutic opportunity. The data from current study is expected to show new avenue for designing experimental strategies in search of anti-leishmanial agents.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India.
| | - Mayuri B Goundge
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Baban S Kolte
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
9
|
Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat Commun 2017. [PMID: 28631755 PMCID: PMC5481828 DOI: 10.1038/ncomms15828] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.
Collapse
|
10
|
Dahal GP, Viola RE. Structure of a fungal form of aspartate-semialdehyde dehydrogenase from Aspergillus fumigatus. Acta Crystallogr F Struct Biol Commun 2017; 73:36-44. [PMID: 28045392 PMCID: PMC5287368 DOI: 10.1107/s2053230x16020070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/16/2016] [Indexed: 11/10/2022] Open
Abstract
Aspartate-semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate biosynthetic pathway and represents a validated target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. The absence of this entire pathway in humans and other mammals will allow the selective targeting of pathogenic microorganisms for antimicrobial development. Here, the X-ray structure of a new form of ASADH from the pathogenic fungal species Aspergillus fumigatus has been determined. The overall structure of this enzyme is similar to those of its bacterial orthologs, but there are some critical differences both in biological assembly and in secondary-structural features that can potentially be exploited for the development of species-selective drugs with selective toxicity against infectious fungal organisms.
Collapse
Affiliation(s)
- Gopal P. Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E. Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
11
|
Rehman A, Akhtar S, Siddiqui MH, Sayeed U, Ahmad SS, Arif JM, Khan MKA. Identification of potential leads against 4-hydroxytetrahydrodipicolinate synthase from Mycobacterium tuberculosis. Bioinformation 2016; 12:400-407. [PMID: 28293071 PMCID: PMC5320922 DOI: 10.6026/97320630012400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/19/2016] [Indexed: 11/23/2022] Open
Abstract
4-hydroxy-tetrahydrodipicolinate synthase (DHDPS) is an important enzyme needed for the biosynthesis of lysine and many more key metabolites in Mycobacterium tuberculosis (Mtb). Inhibition of DHDPS is supposed to a promising therapeutic target due to its specific role in sporulation, cross-linking of the peptidiglycan polymers and biosynthesis of amino acids. In this work, a known inhibitor-based similarity search was carried out against a natural products database (Super Natural II) towards identification of more potent phyto-inhibitors. Molecular interaction studies were accomplished using three different tools to understand and establish the participation of active site residues as the key players in stabilizing the binding mode of ligands and target protein. The best phyto-compound deduced on the basis of binding affinity was further used as a template to make similarity scan across the PubChem Compound database (score > = 80 %) to get more divesred leads. In this search 5098 hits were obtained that further reduced to 262 after drug-likeness filtration. These phytochemicallike compounds were docked at the active site of DHDPS.Then, those hits selected from docking analysis that showing stronger binding and forming maximum H-bonds with the active site residues (Thr54, Thr55, Tyr143, Arg148 and Lys171). Finally, we predicted one phytochemical compound (SN00003544), two PubChem-compounds (CID41032023, CID54025334) akin to phytochemical molecule showing better interactions in comaprison of known inhibitors of target protein.These findings might be further useful to gain the structural insight into the designing of novel leads against DapA family.
Collapse
Affiliation(s)
- Ajijur Rehman
- Department of Biosciences, Faculty of Applied Sciences, Integral University Lucknow, Uttar Pradesh, India-226026
| | - Salman Akhtar
- Department of Bioengineering, Faculty of Engineering, Integral University Lucknow, Uttar Pradesh, India-226026
| | - Mohd Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University Lucknow, Uttar Pradesh, India-226026
| | - Usman Sayeed
- Department of Bioengineering, Faculty of Engineering, Integral University Lucknow, Uttar Pradesh, India-226026
| | - Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University Lucknow, Uttar Pradesh, India-226026
| | - Jamal M. Arif
- Department of Biosciences, Faculty of Applied Sciences, Integral University Lucknow, Uttar Pradesh, India-226026
| | - M. Kalim A. Khan
- Department of Bioengineering, Faculty of Engineering, Integral University Lucknow, Uttar Pradesh, India-226026
| |
Collapse
|
12
|
Ho YH, Shah P, Chen YW, Chen CS. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays. Mol Cell Proteomics 2016; 15:1837-47. [PMID: 26902206 DOI: 10.1074/mcp.m115.054999] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular mechanisms of the action of AMPs.
Collapse
Affiliation(s)
- Yu-Hsuan Ho
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Pramod Shah
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Yi-Wen Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| |
Collapse
|
13
|
Li Q, Mu Z, Zhao R, Dahal G, Viola RE, Liu T, Jin Q, Cui S. Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species. Sci Rep 2016; 6:21067. [PMID: 26869335 PMCID: PMC4751538 DOI: 10.1038/srep21067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Aspartate-β-semialdehyde dehydrogenase (ASADH) catalyzes the second reaction in the aspartate pathway, a pathway required for the biosynthesis of one fifth of the essential amino acids in plants and microorganisms. Microarray analysis of a fungal pathogen T. rubrum responsible for most human dermatophytoses identified the upregulation of ASADH (trASADH) expression when the fungus is exposed to human skin, underscoring its potential as a drug target. Here we report the crystal structure of trASADH, revealing a tetrameric ASADH with a GAPDH-like fold. The tetramerization of trASADH was confirmed by sedimentation and SAXS experiments. Native PAGE demonstrated that this ASADH tetramerization is apparently universal in fungal species, unlike the functional dimer that is observed in all bacterial ASADHs. The helical subdomain in dimeric bacteria ASADH is replaced by the cover loop in archaeal/fungal ASADHs, presenting the determinant for this altered oligomerization. Mutations that disrupt the tetramerization of trASADH also abolish the catalytic activity, suggesting that the tetrameric state is required to produce the active fungal enzyme form. Our findings provide a basis to categorize ASADHs into dimeric and tetrameric enzymes, adopting a different orientation for NADP binding and offer a structural framework for designing drugs that can specifically target the fungal pathogens.
Collapse
Affiliation(s)
- Qinqin Li
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| | - Zhixia Mu
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| | - Rong Zhao
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| | - Gopal Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, USA
| | - Tao Liu
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| | - Qi Jin
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| | - Sheng Cui
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730
| |
Collapse
|
14
|
Dahal G, Viola RE. Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans. Acta Crystallogr F Struct Biol Commun 2015; 71:1365-71. [PMID: 26527262 PMCID: PMC4631584 DOI: 10.1107/s2053230x15017495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
Aspartate semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate-biosynthetic pathway and represents a valid target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. Production of this intermediate represents the first committed step in the biosynthesis of the essential amino acids methionine, isoleucine and threonine in fungi, and also the amino acid lysine in bacteria. The structure of a new fungal form of ASADH from Cryptococcus neoformans has been determined to 2.6 Å resolution. The overall structure of CnASADH is similar to those of its bacterial orthologs, but with some critical differences both in biological assembly and in secondary-structural features that can potentially be exploited for the development of species-selective drugs.
Collapse
Affiliation(s)
- Gopal Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E. Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
15
|
Thangavelu B, Bhansali P, Viola RE. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors. Bioorg Med Chem 2015; 23:6622-31. [PMID: 26404410 DOI: 10.1016/j.bmc.2015.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Pravin Bhansali
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
16
|
Kumar R, Garg P, Bharatam P. Pharmacoinformatics analysis to identify inhibitors ofMtb-ASADH. J Biomol Struct Dyn 2015; 34:1-14. [DOI: 10.1080/07391102.2015.1005137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Thangavelu B, Pavlovsky AG, Viola R. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure. Acta Crystallogr F Struct Biol Commun 2014; 70:1340-5. [PMID: 25286936 PMCID: PMC4188076 DOI: 10.1107/s2053230x14018664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
Homoserine O-acetyltransferase (HTA) catalyzes the formation of L-O-acetyl-homoserine from L-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Alexander G. Pavlovsky
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Ronald Viola
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
18
|
Kumar R, Garg P, Bharatam PV. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors. J Biomol Struct Dyn 2014; 33:1082-93. [PMID: 24875451 DOI: 10.1080/07391102.2014.929535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand-enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6 Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.
Collapse
Affiliation(s)
- Rajender Kumar
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S.A.S. Nagar 160 062 , Punjab , India
| | | | | |
Collapse
|
19
|
Kumar R, Garg P. Molecular Modeling and Active Site Binding Mode Characterization of Aspartate β-Semialdehyde Dehydrogenase Family. Mol Inform 2013; 32:377-83. [PMID: 27481594 DOI: 10.1002/minf.201200128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/19/2012] [Indexed: 11/10/2022]
Abstract
The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) plays a vital role in biosynthesis of essential amino acids and several important metabolites in microbes and some higher plants. So this key enzyme can be targeted selectively in these microbes to exhibit anti-bacterial and fungicidal effects. In this work, molecular modeling and comparative active site binding mode studies were performed for understanding the mode of action, in silico insight into the 3D structure, enzyme-substrate interactions with natural substrate in this homologous enzyme family. During comparative sequence analysis, high diversity was found in the sequences of different ASADHs and exhibited the same key binding interactions with the substrate. Both, the functional carboxylic and the phosphate group of the substrate are engaged in a bidentate interaction with the guanidinium N atom of two key arginyl active site residues of ASADHs. These structural and active site binding mode characterization studies can further be used for designing the more potent and selective substrate analogues inhibitors against ASADH family.
Collapse
Affiliation(s)
- Rajender Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A.S. Nagar, Punjab 160062, India tel.: +91-172-2292016; fax: +91-172-2214692
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A.S. Nagar, Punjab 160062, India tel.: +91-172-2292016; fax: +91-172-2214692. .,Computer Centre, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
20
|
Demmer U, Warkentin E, Srivastava A, Kockelkorn D, Pötter M, Marx A, Fuchs G, Ermler U. Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase. J Biol Chem 2013; 288:6363-70. [PMID: 23325803 DOI: 10.1074/jbc.m112.421263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotrophic members of the Sulfolobales (crenarchaeota) use the 3-hydroxypropionate/4-hydroxybutyrate cycle to assimilate CO2 into cell material. The product of the initial acetyl-CoA carboxylation with CO2, malonyl-CoA, is further reduced to malonic semialdehyde by an NADPH-dependent malonyl-CoA reductase (MCR); the enzyme also catalyzes the reduction of succinyl-CoA to succinic semialdehyde onwards in the cycle. Here, we present the crystal structure of Sulfolobus tokodaii malonyl-CoA reductase in the substrate-free state and in complex with NADP(+) and CoA. Structural analysis revealed an unexpected reaction cycle in which NADP(+) and CoA successively occupy identical binding sites. Both coenzymes are pressed into an S-shaped, nearly superimposable structure imposed by a fixed and preformed binding site. The template-governed cofactor shaping implicates the same binding site for the 3'- and 2'-ribose phosphate group of CoA and NADP(+), respectively, but a different one for the common ADP part: the β-phosphate of CoA aligns with the α-phosphate of NADP(+). Evolution from an NADP(+) to a bispecific NADP(+) and CoA binding site involves many amino acid exchanges within a complex process by which constraints of the CoA structure also influence NADP(+) binding. Based on the paralogous aspartate-β-semialdehyde dehydrogenase structurally characterized with a covalent Cys-aspartyl adduct, a malonyl/succinyl group can be reliably modeled into MCR and discussed regarding its binding mode, the malonyl/succinyl specificity, and the catalyzed reaction. The modified polypeptide surrounding around the absent ammonium group in malonate/succinate compared with aspartate provides the structural basis for engineering a methylmalonyl-CoA reductase applied for biotechnical polyester building block synthesis.
Collapse
Affiliation(s)
- Ulrike Demmer
- Max-Planck-Institut für Biophysik, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|