1
|
Synthesis of Novel Nanostructured Copper Tungstate/GCE Electrochemical System in Deep Eutectic Solvent medium for Simultaneous Detection of Dopamine and Paracetamol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Dehdashti A, Babaei A. Designing and characterization of a novel sensing platform based on Pt doped NiO/MWCNTs nanocomposite for enhanced electrochemical determination of epinephrine and tramadol simultaneously. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Development of a novel hybrid biofuel cell type APAP/O2 based on a fungal bioanode with a Scedosporium dehoogii biofilm. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-1030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes. Anal Bioanal Chem 2016; 408:5895-5903. [DOI: 10.1007/s00216-016-9704-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
|
5
|
Electroanalytical Performance of a Carbon Paste Electrode Modified by Coffee Husks for the Quantification of Acetaminophen in Quality Control of Commercialized Pharmaceutical Tablets. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2016. [DOI: 10.1155/2016/1953278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE) modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. The electrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higher with the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface. Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6 μM to 0.5 mM, leading to a detection limit of 0.66 μM (S/N=3). Finally, the proposed CH-CPE sensor was successfully used to determine the amount of APAP in commercialized tablets (Doliprane® 500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%. This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceutical formulations in developing countries.
Collapse
|