1
|
Singh SK, Prislovsky A, Ngwa DN, Munkhsaikhan U, Abidi AH, Brand DD, Agrawal A. C-reactive protein lowers the serum level of IL-17, but not TNF-α, and decreases the incidence of collagen-induced arthritis in mice. Front Immunol 2024; 15:1385085. [PMID: 38650931 PMCID: PMC11033386 DOI: 10.3389/fimmu.2024.1385085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The biosynthesis of C-reactive protein (CRP) in the liver is increased in inflammatory diseases including rheumatoid arthritis. Previously published data suggest a protective function of CRP in arthritis; however, the mechanism of action of CRP remains undefined. The aim of this study was to evaluate the effects of human CRP on the development of collagen-induced arthritis (CIA) in mice which is an animal model of autoimmune inflammatory arthritis. Two CRP species were employed: wild-type CRP which binds to aggregated IgG at acidic pH and a CRP mutant which binds to aggregated IgG at physiological pH. Ten CRP injections were given on alternate days during the development of CIA. Both wild-type and mutant CRP reduced the incidence of CIA, that is, reduced the number of mice developing CIA; however, CRP did not affect the severity of the disease in arthritic mice. The serum levels of IL-17, IL-6, TNF-α, IL-10, IL-2 and IL-1β were measured: both wild-type and mutant CRP decreased the level of IL-17 and IL-6 but not of TNF-α, IL-10, IL-2 and IL-1β. These data suggest that CRP recognizes and binds to immune complexes, although it was not clear whether CRP functioned in its native pentameric or in its structurally altered pentameric form in the CIA model. Consequently, ligand-complexed CRP, through an as-yet undefined mechanism, directly or indirectly, inhibits the production of IL-17 and eventually protects against the initiation of the development of arthritis. The data also suggest that IL-17, not TNF-α, is critical for the development of autoimmune inflammatory arthritis.
Collapse
Affiliation(s)
- Sanjay K. Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Amanda Prislovsky
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN, United States
| | - Donald N. Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Undral Munkhsaikhan
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, United States
| | - Ammaar H. Abidi
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, United States
| | - David D. Brand
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
2
|
Shen ZY, Zheng Y, Pecsok MK, Wang K, Li W, Gong MJ, Wu F, Zhang L. C-Reactive Protein Suppresses the Th17 Response Indirectly by Attenuating the Antigen Presentation Ability of Monocyte Derived Dendritic Cells in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:589200. [PMID: 33841391 PMCID: PMC8027258 DOI: 10.3389/fimmu.2021.589200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical murine model for Multiple Sclerosis (MS), a human autoimmune disease characterized by Th1 and Th17 responses. Numerous studies have reported that C-reactive protein (CRP) mitigates EAE severity, but studies on the relevant pathologic mechanisms are insufficient. Our previous study found that CRP suppresses Th1 response directly by receptor binding on naïve T cells; however, we did not observe the effect on Th17 response at that time; thus it remains unclear whether CRP could regulate Th17 response. In this study, we verified the downregulation of Th17 response by a single-dose CRP injection in MOG-immunized EAE mice in vivo while the direct and indirect effects of CRP on Th17 response were differentiated by comparing its actions on isolated CD4+ T cells and splenocytes in vitro, respectively. Moreover, the immune cell composition was examined in the blood and CNS (Central Nervous System), and a blood (monocytes) to CNS (dendritic cells) infiltration pathway is established in the course of EAE development. The infiltrated monocyte derived DCs (moDCs) were proved to be the only candidate antigen presenting cells to execute CRP’s function. Conversely, the decrease of Th17 responses caused by CRP disappeared in the above in vivo and in vitro studies with FcγR2B−/− mice, indicating that FcγR2B expressed on moDCs mediates CRP function. Furthermore, peripheral blood monocytes were isolated and induced to establish moDCs, which were used to demonstrate that the antigen presenting ability of moDCs was attenuated by CRP through FcγR2B, and then NF-κB and ERK signaling pathways were manifested to be involved in this regulation. Ultimately, we perfected and enriched the mechanism studies of CRP in EAE remission, so we are more convinced that CRP plays a key role in protecting against EAE development, which may be a potential therapeutic target for the treatment of MS in human.
Collapse
Affiliation(s)
- Zhi-Yuan Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maggie K Pecsok
- Departments of Neurology and Immunology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ke Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Min-Jie Gong
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Jimenez RV, Kuznetsova V, Connelly AN, Hel Z, Szalai AJ. C-Reactive Protein Promotes the Expansion of Myeloid Derived Cells With Suppressor Functions. Front Immunol 2019; 10:2183. [PMID: 31620123 PMCID: PMC6759522 DOI: 10.3389/fimmu.2019.02183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
Previously we established that human C-reactive protein (CRP) exacerbates mouse acute kidney injury and that the effect was associated with heightened renal accumulation of myeloid derived cells with suppressor functions (MDSC). Herein we provide direct evidence that CRP modulates the development and suppressive actions of MDSCs in vitro. We demonstrate that CRP dose-dependently increases the generation of MDSC from wild type mouse bone marrow progenitors and enhances MDSC production of intracellular reactive oxygen species (iROS). When added to co-cultures, CRP significantly enhanced the ability of MDSCs to suppress CD3/CD28-stimulated T cell proliferation. Experiments using MDSCs from FcγRIIB deficient mice (FcγRIIB-/-) showed that CRP's ability to expand MDSCs and trigger their increased production of iROS was FcγRIIB-independent, whereas its ability to enhance the MDSC T cell suppressive action was FcγRIIB-dependent. Importantly, CRP also enabled freshly isolated primary human neutrophils to suppress proliferation of autologous T cells. These findings suggest that CRP might be an endogenous regulator of MDSC numbers and actions in vivo.
Collapse
Affiliation(s)
- Rachel V Jimenez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley N Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Jimenez RV, Wright TT, Jones NR, Wu J, Gibson AW, Szalai AJ. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 2018; 9:372. [PMID: 29556231 PMCID: PMC5845098 DOI: 10.3389/fimmu.2018.00372] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
C-reactive protein (CRP) is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE) in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB), but did not require high levels of human CRP. Herein, we sought to determine if CRP's influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB). We found that CRP (50 µg/ml) reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs) and CRP (≥5 μg/ml) prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i) the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii) CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.
Collapse
Affiliation(s)
- Rachel V. Jimenez
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tyler T. Wright
- Division of Drug Development, Southern Research, Birmingham, AL, United States
| | - Nicholas R. Jones
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Andrew W. Gibson
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Szalai
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Chen W, Pilling D, Gomer RH. C-reactive protein (CRP) but not the related pentraxins serum amyloid P and PTX3 inhibits the proliferation and induces apoptosis of the leukemia cell line Mono Mac 6. BMC Immunol 2017; 18:47. [PMID: 29202702 PMCID: PMC5716379 DOI: 10.1186/s12865-017-0230-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Background Pentraxins are a family of highly conserved secreted proteins that regulate the innate immune system, including monocytes and macrophages. C-reactive protein (CRP) is a plasma protein whose levels can rise to 1000 μg/ml from the normal <3 μg/ ml during inflammation. Results We find that CRP inhibits proliferation of the human myeloid leukemia cell line Mono Mac 6 with an IC50 of 75 μg/ ml by inducing apoptosis of these cells. The related proteins serum amyloid P (SAP) and pentraxin 3 (PTX3) do not inhibit Mono Mac 6 proliferation. CRP has no significant effect on the proliferation of other leukemia cell lines such as HL-60, Mono Mac 1, K562, U937, or THP-1, or the survival of normal peripheral blood cells. The effect of CRP appears to be dependent on the CRP receptor FcγRI, and is negatively regulated by a phosphatidylinositol −3-kinase pathway. Conclusion These data reveal differential signaling by pentraxins on immune cells, and suggest that CRP can regulate the proliferation of some myeloid leukemia cells.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA.
| |
Collapse
|
6
|
Hepatic but Not CNS-Expressed Human C-Reactive Protein Inhibits Experimental Autoimmune Encephalomyelitis in Transgenic Mice. Autoimmune Dis 2015; 2015:640171. [PMID: 26421184 PMCID: PMC4573232 DOI: 10.1155/2015/640171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022] Open
Abstract
We recently demonstrated that human C-reactive protein (CRP), expressed hepatically in transgenic mice (CRPtg), improved the outcome of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The liver is the primary site of CRP synthesis in humans and in CRPtg mice but is also expressed by both at low levels in the CNS. To determine if CNS expression of human CRP is sufficient to impact EAE, we generated neuronal CRP transgenic mice (nCRPtg) wherein human CRP expression is driven by the neuron-specific Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) gene promoter. We found that hepatically expressed/blood-borne CRP, but not CNS expressed CRP, lessened EAE severity. These outcomes indicate that the protective actions of human CRP in EAE are manifested in the periphery and not in the CNS and reveal a previously unappreciated site specificity for the beneficial actions of CRP in CNS disease.
Collapse
|
7
|
DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice. Proc Natl Acad Sci U S A 2015; 112:8385-90. [PMID: 26106150 DOI: 10.1073/pnas.1500956112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis. However, SAP and CRP bind the same Fcγ receptors (FcγR) with similar affinities, and why SAP and CRP have opposing effects is unknown. Here, we report that SAP but not CRP binds the receptor DC-SIGN (SIGN-R1) to affect the innate immune system, and that FcγR are not necessary for SAP function. A polycyclic aminothiazole DC-SIGN ligand and anti-DC-SIGN antibodies mimic SAP effects in vitro. In mice, the aminothiazole reduces neutrophil accumulation in a model of acute lung inflammation and, at 0.001 mg/kg, alleviates pulmonary fibrosis by increasing levels of the immunosuppressant IL-10. DC-SIGN (SIGN-R1) is present on mouse lung epithelial cells, and SAP and the aminothiazole potentiate IL-10 production from these cells. Our data suggest that SAP activates DC-SIGN to regulate the innate immune system differently from CRP, and that DC-SIGN is a target for antifibrotics.
Collapse
|
8
|
Zhang L, Liu SH, Wright TT, Shen ZY, Li HY, Zhu W, Potempa LA, Ji SR, Szalai AJ, Wu Y. C-reactive protein directly suppresses Th1 cell differentiation and alleviates experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:5243-52. [PMID: 25917100 DOI: 10.4049/jimmunol.1402909] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/30/2015] [Indexed: 01/14/2023]
Abstract
Human C-reactive protein (CRP) is a serum-soluble pattern recognition receptor that serves as a marker of inflammation and directly contributes to innate immunity. In this study, we show that human CRP also directly contributes to adaptive immunity, that is, native CRP binds specifically to human Jurkat T cells and to mouse naive CD4(+) T cells and modulates their Th1 and Th2 responses. In vitro both exogenously added (purified) and endogenously expressed (via transfection) human CRP inhibited Th1 differentiation and augmented Th2 differentiation of naive CD4(+) T cells. In vivo for human CRP transgenic compared with wild-type mice, a lesser proportion of the T cells recovered from the spleens of healthy animals were Th1 cells. Moreover, in both CRP transgenic mice and in wild-type mice treated with human CRP, during myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis both the Th1 cell response and disease severity were inhibited. These pattern recognition-independent actions of CRP directly on T cells highlights the potential for this soluble pattern recognition receptor to act as a tonic regulator of immunity, shaping global adaptive immune responses during both homeostasis and disease.
Collapse
Affiliation(s)
- Lin Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shan-Hui Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tyler T Wright
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Zhi-Yuan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Yun Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Zhu
- Second Hospital of Lanzhou University, Lanzhou 730030, People's Republic of China
| | - Lawrence A Potempa
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, Schaumburg, IL 60173; and
| | - Shang-Rong Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China;
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294;
| | - Yi Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
9
|
Ten Broeke T, van Spriel A, Sun P, Leusen J. Meeting report on immunoreceptors 2014. FASEB J 2015; 29:740-4. [PMID: 25733692 DOI: 10.1096/fj.15-0302ufm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Toine Ten Broeke
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Annemiek van Spriel
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Sun
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeanette Leusen
- *Laboratory of Translational Immunology, Immunotherapy Group, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
11
|
Abstract
Pentraxins are innate pattern recognition molecules whose major function is to bind microbial pathogens or cellular debris during infection and inflammation and, by doing so, contribute to the clearance of necrotic cells as well as pathogens through complement activations. Fc receptors are the cellular mediators of antibody functions. Although conceptually separated, both pentraxins and antibodies are important factors in controlling acute and chronic inflammation and infections. In recent years, increasing experimental evidence suggests a direct link between the innate pentraxins and humoral Fc receptors. Specifically, both human and mouse pentraxins recognize major forms of Fc receptors in solution and on cell surfaces with affinities similar to antibodies binding to their low affinity Fc receptors. Like immune complex, pentraxin aggregation and opsonization of pathogen result in Fc receptor and macrophage activation. The recently published crystal structure of human serum amyloid P (SAP) in complex with FcγRIIA further illustrated similarities to antibody recognition. These recent findings implicate a much broader role than complement activation for pentraxins in immunity. This review summarizes the structural and functional work that bridge the innate pentraxins and the adaptive Fc receptor functions. In many ways, pentraxins can be regarded as innate antibodies.
Collapse
Affiliation(s)
- Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kristopher D. Marjon
- Department of Internal Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - Carolyn Mold
- Department of Internal Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - Terry W. Du Clos
- Department of Internal Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
- VA Medical Center, Albuquerque, NM, USA
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
12
|
Jones NR, Pegues MA, McCrory MA, Kerr SW, Jiang H, Sellati R, Berger V, Villalona J, Parikh R, McFarland M, Pantages L, Madwed JB, Szalai AJ. Collagen-induced arthritis is exacerbated in C-reactive protein-deficient mice. ACTA ACUST UNITED AC 2011; 63:2641-50. [PMID: 21567377 DOI: 10.1002/art.30444] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Blood C-reactive protein (CRP) is routinely measured to gauge inflammation. In rheumatoid arthritis (RA), a heightened CRP level is predictive of a poor outcome, while a lowered CRP level is indicative of a positive response to therapy. CRP interacts with the innate and adaptive immune systems in ways that suggest it may be causal in RA and, although this is not proven, it is widely assumed that CRP makes a detrimental contribution to the disease process. Paradoxically, results from animal studies have indicated that CRP might be beneficial in RA. This study was undertaken to study the role of CRP in a mouse model of RA, the collagen-induced arthritis (CIA) model. METHODS We compared the impact of CRP deficiency with that of transgenic overexpression of CRP on inflammatory and immune responses in mice, using CRP-deficient (Crp-/-) and human CRP-transgenic (CRP-Tg) mice, respectively. Susceptibility to CIA, a disease that resembles RA in humans, was compared between wild-type, Crp-/-, and CRP-Tg mice. RESULTS CRP deficiency significantly altered the inflammatory cytokine response evoked by challenge with endotoxin or anti-CD3 antibody, and heightened some immune responses. Compared to that in wild-type mice, CIA in Crp-/- mice progressed more rapidly and was more severe, whereas CIA in CRP-Tg mice was dramatically attenuated. Despite these disparate clinical outcomes, anticollagen autoantibody responses during CIA did not differ among the genotypes. CONCLUSION CRP exerts an early and beneficial effect in mice with CIA. The mechanism of this effect remains unknown but does not involve improvement of the autoantibody profile. In humans, the presumed detrimental role of a heightened blood CRP level during active RA might be balanced by a beneficial effect of the baseline CRP (i.e., levels manifest during the preclinical stages of disease).
Collapse
|