1
|
Giotakos P, Neophytides S. Unraveling the elusive Oxygen Reduction Reaction electrokinetics and energetics in PEM Fuel Cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Design and Optimization of Fuel Cells: A Case Study on Polymer Electrolyte Membrane Fuel Cell Power Systems for Portable Applications. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/6568456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fuel cells are energy conversion devices that directly convert chemical energy of fuels such as hydrogen to useful work with negligible environmental impact and high efficiency. This study deals with thermodynamic analysis and modeling of polymer electrolyte membrane fuel cell (PEMFC) power systems for portable applications. In this regard, a case study of powering a computer with a PEMFC is presented. Also, an inclusive evaluation of various parameters such as voltage polarization, overall system efficiency, power output, and heat generation is reported. In addition, a parametric study is conducted to study the effect of many design and operation parameters on the overall efficiency. Results show the direct influence of current density and temperature values on optimization of the design parameters in PEMFCs.
Collapse
|
3
|
Abstract
Hydrogen (H2) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein, we explored and optimized the main variables that affect this power production. The process includes biomass fermentation, bioethanol purification, H2 production via ESR, syngas cleaning by a CO-removal reactor, and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables, the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production, process efficiency, and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production, it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17%, when ESR temperature is 700 °C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration, it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2-economy.
Collapse
|
4
|
Ellamla HR, Bujlo P, Sita C, Pasupathi S. Comparatative analysis on various reformers supplied with different fuels and integrated with high temperature PEM fuel cells. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Sousa T, Rangel CM. Pore scale modelling of a cathode catalyst layer in fuel cell environment: agglomerate reconstruction and variables optimization. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-3076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology. Catalysts 2015. [DOI: 10.3390/catal5041673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
A review of the development of high temperature proton exchange membrane fuel cells. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(14)60272-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Effect of Flow Pattern on Single and Multi-stage High Temperature Proton Exchange Membrane Fuel Cell Stack Performance. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63455-9.50080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Álvarez GF, Mamlouk M, Scott K. An Investigation of Palladium Oxygen Reduction Catalysts for the Direct Methanol Fuel Cell. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2011. [DOI: 10.4061/2011/684535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative study of Pd and Pt was carried out in DMFC using different methanol concentrations and under different operating conditions. Cell performance was compared at methanol concentrations of 1, 3, 5, and 7 M and at temperatures of 20, 40, and 60°C. Homemade Pd nanoparticles were prepared on Vulcan XC-72R using ethylene glycol as the reducing agent at pH 11. The resulting catalyst, Pd/C, with metal nanoparticles of approximately 6 nm diameter, was tested as a cathode catalyst in DMFC. At methanol concentrations of 5 M and higher, the Pd cathode-based cell performed better than that with Pt at 60°C with air.
Collapse
Affiliation(s)
- G. F. Álvarez
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - M. Mamlouk
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - K. Scott
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|