1
|
Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR Oximetry of Changes in Intracerebral Oxygen Tension During Induced Thromboembolism. Cell Biochem Biophys 2017; 75:285-294. [PMID: 28434138 DOI: 10.1007/s12013-017-0798-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cerebral tissue oxygenation (oxygen tension, pO2) is a critical parameter that is closely linked to brain metabolism, function, and pathophysiology. In this work, we have used electron paramagnetic resonance oximetry with a deep-tissue multi-site oxygen-sensing probe, called implantable resonator, to monitor temporal changes in cerebral pO2 simultaneously at four sites in a rabbit model of ischemic stroke induced by embolic clot. The pO2 values in healthy brain were not significantly different among the four sites measured over a period of 4 weeks. During exposure to 15% O2 (hypoxia), a sudden and significant decrease in pO2 was observed in all four sites. On the other hand, brief exposure to breathing carbogen gas (95% O2 + 5% CO2) showed a significant increase in the cerebral pO2 from baseline value. During ischemic stroke, induced by embolic clot in the left brain, a significant decline in the pO2 of the left cortex (ischemic core) was observed without any change in the contralateral sites. While the pO2 in the non-infarct regions returned to baseline at 24-h post-stroke, pO2 in the infarct core was consistently lower compared to the baseline and other regions of the brain. The results demonstrated that electron paramagnetic resonance oximetry with the implantable resonator can repeatedly and simultaneously report temporal changes in cerebral pO2 at multiple sites. This oximetry approach can be used to develop interventions to rescue hypoxic/ischemic tissue by modulating cerebral pO2 during hypoxic and stroke injury.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Nadeem Khan
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Sangeeta Gohain
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Clifford J Eskey
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Harold M Swartz
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA.
| |
Collapse
|
2
|
Matsunaga TO, Sheeran PS, Luois S, Streeter JE, Mullin LB, Banerjee B, Dayton PA. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2012; 2:1185-98. [PMID: 23382775 PMCID: PMC3563153 DOI: 10.7150/thno.4846] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/02/2012] [Indexed: 12/20/2022] Open
Abstract
Recent efforts using perfluorocarbon (PFC) nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs) from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C) and octafluoropropane (OFP, bp =-37 °C ) for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs.
Collapse
|