1
|
Scepankova H, Galante D, Espinoza-Suaréz E, Pinto CA, Estevinho LM, Saraiva J. High Hydrostatic Pressure in the Modulation of Enzymatic and Organocatalysis and Life under Pressure: A Review. Molecules 2023; 28:molecules28104172. [PMID: 37241913 DOI: 10.3390/molecules28104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The interest in high hydrostatic pressure (HHP) is mostly focused on the inactivation of deleterious enzymes, considering the quality-related issues associated with enzymes in foods. However, more recently, HHP has been increasingly studied for several biotechnological applications, including the possibility of carrying out enzyme-catalyzed reactions under high pressure. This review aims to comprehensively present and discuss the effects of HHP on the kinetic catalytic action of enzymes and the equilibrium of the reaction when enzymatic reactions take place under pressure. Each enzyme can respond differently to high pressure, mainly depending on the pressure range and temperature applied. In some cases, the enzymatic reaction remains significantly active at high pressure and temperature, while at ambient pressure it is already inactivated or possesses minor activity. Furthermore, the effect of temperature and pressure on the enzymatic activity indicated a faster decrease in activity when elevated pressure is applied. For most cases, the product concentration at equilibrium under pressure increased; however, in some cases, hydrolysis was preferred over synthesis when pressure increased. The compiled evidence of the effect of high pressure on enzymatic activity indicates that pressure is an effective reaction parameter and that its application for enzyme catalysis is promising.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Diogo Galante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Letícia M Estevinho
- CIMO, Mountain Research Center Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Jorge Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Optimized Conditions for Preparing a Heterogeneous Biocatalyst via Cross-Linked Enzyme Aggregates (CLEAs) of β-Glucosidase from Aspergillus niger. Catalysts 2022. [DOI: 10.3390/catal13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study mainly aims to find the optimal conditions for immobilizing a non-commercial β-glucosidase from Aspergillus niger via cross-linked enzyme aggregates (CLEAs) by investigating the effect of cross-linking agent (glutaraldehyde) concentration and soy protein isolate/enzyme ratio (or spacer/enzyme ratio) on the catalytic performance of β-glucosidase through the central composite rotatable design (CCRD). The influence of certain parameters such as pH and temperature on the hydrolytic activity of the resulting heterogeneous biocatalyst was assessed and compared with those of a soluble enzyme. The catalytic performance of both the soluble and immobilized enzyme was assessed by hydrolyzing ρ-nitrophenyl-β-D-glucopyranoside (ρ-NPG) at pH 4.5 and 50 °C. It was found that there was a maximum recovered activity of around 33% (corresponding to hydrolytic activity of 0.48 U/mL) in a spacer/enzyme ratio of 4.69 (mg/mg) using 25.5 mM glutaraldehyde. The optimal temperature and pH conditions for the soluble enzyme were 60 °C and 4.5, respectively, while those for CLEAs of β-glucosidase were between 50 and 65 °C and pH 3.5 and 4.0. These results reveal that the immobilized enzyme is more stable in a wider pH and temperature range than its soluble form. Furthermore, an improvement was observed in thermal stability after immobilization. After 150 days at 4 °C, the heterogeneous biocatalyst retained 80% of its original activity, while the soluble enzyme retained only 10%. The heterogeneous biocatalyst preparation was also characterized by TG/DTG and FT-IR analyses that confirmed the introduction of carbon chains via cross-linking. Therefore, the immobilized biocatalyst prepared in this study has improved enzyme stabilization, and it is an interesting approach to preparing heterogeneous biocatalysts for industrial applications.
Collapse
|
3
|
Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10030494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enzymes are outstanding (bio)catalysts, not solely on account of their ability to increase reaction rates by up to several orders of magnitude but also for the high degree of substrate specificity, regiospecificity and stereospecificity. The use and development of enzymes as robust biocatalysts is one of the main challenges in biotechnology. However, despite the high specificities and turnover of enzymes, there are also drawbacks. At the industrial level, these drawbacks are typically overcome by resorting to immobilized enzymes to enhance stability. Immobilization of biocatalysts allows their reuse, increases stability, facilitates process control, eases product recovery, and enhances product yield and quality. This is especially important for expensive enzymes, for those obtained in low fermentation yield and with relatively low activity. This review provides an integrated perspective on (multi)enzyme immobilization that abridges a critical evaluation of immobilization methods and carriers, biocatalyst metrics, impact of key carrier features on biocatalyst performance, trends towards miniaturization and detailed illustrative examples that are representative of biocatalytic applications promoting sustainability.
Collapse
|
4
|
Oliart-Ros RM, Badillo-Zeferino GL, Quintana-Castro R, Ruíz-López II, Alexander-Aguilera A, Domínguez-Chávez JG, Khan AA, Nguyen DD, Nadda AK, Sánchez-Otero MG. Production and Characterization of Cross-Linked Aggregates of Geobacillus thermoleovorans CCR11 Thermoalkaliphilic Recombinant Lipase. Molecules 2021; 26:7569. [PMID: 34946651 PMCID: PMC8708040 DOI: 10.3390/molecules26247569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.
Collapse
Affiliation(s)
- Rosa-María Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Giselle-Lilian Badillo-Zeferino
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Rodolfo Quintana-Castro
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Irving-Israel Ruíz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla C.P. 72570, Pue., Mexico;
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Jorge-Guillermo Domínguez-Chávez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dinh Duc Nguyen
- Department of Environmental and Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si 16227, Gyeonggi-do, Korea;
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Faculty of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - María-Guadalupe Sánchez-Otero
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| |
Collapse
|
5
|
Torabizadeh H, Montazeri E. Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydr Res 2020; 488:107904. [DOI: 10.1016/j.carres.2019.107904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
|
6
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
7
|
Torabizadeh H, Mikani M. Nano-magnetic cross-linked enzyme aggregates of naringinase an efficient nanobiocatalyst for naringin hydrolysis. Int J Biol Macromol 2018; 117:134-143. [DOI: 10.1016/j.ijbiomac.2018.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
|
8
|
Guerrero C, Aburto C, Suárez S, Vera C, Illanes A. Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Bugada LF, Smith MR, Wen F. Engineering Spatially Organized Multienzyme Assemblies for Complex Chemical Transformation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01883] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Antón-Millán N, García-Tojal J, Marty-Roda M, Garroni S, Cuesta-López S, Tamayo-Ramos JA. Influence of Three Commercial Graphene Derivatives on the Catalytic Properties of a Lactobacillus plantarum α-l-Rhamnosidase When Used as Immobilization Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18170-18182. [PMID: 29732878 DOI: 10.1021/acsami.7b18844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modification of carbon nanomaterials with biological molecules paves the way toward their use in biomedical and biotechnological applications, such as next-generation biocatalytic processes, development of biosensors, implantable electronic devices, or drug delivery. In this study, different commercial graphene derivatives, namely, monolayer graphene oxide (GO), graphene oxide nanocolloids (GOCs), and polycarboxylate-functionalized graphene nanoplatelets (GNs), were compared as biomolecule carrier matrices. Detailed spectroscopic analyses showed that GO and GOC were similar in composition and functional group content and very different from GN, whereas divergent morphological characteristics were observed for each nanomaterial through microscopy analyses. The commercial α-l-rhamnosidase RhaB1 from the probiotic bacterium Lactobacillus plantarum, selected as a model biomolecule for its relevant role in the pharma and food industries, was directly immobilized on the different materials. The binding efficiency and biochemical properties of RhaB1-GO, RhaB1-GOC, and RhaB1-GN composites were analyzed. RhaB1-GO and RhaB1-GOC showed high binding efficiency, whereas the enzyme loading on GN, not tested in previous enzyme immobilization studies, was low. The enzyme showed contrasting changes when immobilized on the different material supports. The effect of pH on the activity of the three RhaB1-immobilized versions was similar to that observed for the free enzyme, whereas the activity-temperature profiles and the response to the presence of inhibitors varied significantly between the RhaB1 versions. In addition, the apparent Km for the immobilized and soluble enzymes did not change. Finally, the free RhaB1 and the immobilized enzyme in GOC showed the best storage and reutilization stability, keeping most of their initial activity after 8 weeks of storage at 4 °C and 10 reutilization cycles, respectively. This study shows, for the first time, that distinct commercial graphene derivatives can influence differently the catalytic properties of an enzyme during its immobilization.
Collapse
Affiliation(s)
- Noemí Antón-Millán
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | | | - Marta Marty-Roda
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Sebastiano Garroni
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Santiago Cuesta-López
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Juan Antonio Tamayo-Ramos
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| |
Collapse
|
11
|
Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan. Appl Biochem Biotechnol 2017; 184:1263-1285. [DOI: 10.1007/s12010-017-2622-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
|
12
|
Borzova N, Gudzenko O, Varbanets L. Purification and Characterization of a Naringinase from Cryptococcus albidus. Appl Biochem Biotechnol 2017; 184:953-969. [PMID: 28920164 DOI: 10.1007/s12010-017-2593-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022]
Abstract
Naringinase which was extracted from the fermented broth of Cryptococcus albidus was purified about 42-folds with yield 0.7% by sulfate fractionation and chromatography on Toyopearl HW-60, Fractogel DEAE-650-s, and Sepharose 6B columns. Molecular weight of protein determined by gel filtration and SDS-PAGE was 50 kDa. Naringinase of C. albidus includes high content of the dicarbonic and hydrophobic amino acids. Enzyme contains also carbohydrate component, represented by mannose, galactose, rhamnose, ribose, arabinose, xylose, and glucose. The enzyme was optimally active at pH 5.0 and 60 °C. Naringinase was found to exhibit specificity towards p-nitrophenyl-α-L-rhamnose, p-nitrophenyl-β-D-glucose, naringin, and neohesperidin. Its K m towards naringin was 0.77 mM and the V max was 36 U/mg. Naringinase was inhibited by high concentrations of reaction product-L-rhamnose. Enzyme revealed stability to 20% ethanol and 500 mM glucose in the reaction mixture that makes it possible to forecast its practical use in the food industry in the production of juices and wines.
Collapse
Affiliation(s)
- Nataliya Borzova
- Department Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny St, Kyiv, 03143, Ukraine.
| | - Olena Gudzenko
- Department Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny St, Kyiv, 03143, Ukraine
| | - Lyudmila Varbanets
- Department Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny St, Kyiv, 03143, Ukraine
| |
Collapse
|
13
|
Awad GEA, Abd El Aty AA, Shehata AN, Hassan ME, Elnashar MM. Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin. 3 Biotech 2016; 6:14. [PMID: 28330084 PMCID: PMC4703588 DOI: 10.1007/s13205-015-0338-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/07/2015] [Indexed: 12/02/2022] Open
Abstract
Naringinase induced from the fermented broth of marine-derived fungus Aspergillus niger was immobilized into grafted gel beads, to obtain biocatalytically active beads. The support for enzyme immobilization was characterized by ART-FTIR and TGA techniques. TGA revealed a significant improvement in the grafted gel's thermal stability from 200 to 300 °C. Optimization of the enzyme loading capacity increased gradually by 28-fold from 32 U/g gel to 899 U/g gel beads, retaining 99 % of the enzyme immobilization efficiency and 88 % of the immobilization yield. The immobilization process highly improved the enzyme's thermal stability from 50 to 70 °C, which is favored in food industries, and reusability test retained 100 % of the immobilized enzyme activity after 20 cycles. These results are very useful on the marketing and industrial levels.
Collapse
Affiliation(s)
- Ghada E A Awad
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Abeer A Abd El Aty
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Abeer N Shehata
- Biochemistry Department, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
- Encapsulation and Nanobiotechnology Group, Center of Excellence, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Elnashar
- Biomedical Sciences Department, Curtin University, Perth, Australia
- Polymers Department, National Research Centre, Dokki, Giza, Egypt
- Encapsulation and Nanobiotechnology Group, Center of Excellence, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
14
|
Optimizing the preparation conditions and characterization of a stable and recyclable cross-linked enzyme aggregate (CLEA)-protease. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-015-0081-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Liu Y, Guo C, Liu CZ. Novel Magnetic Cross-Linked Lipase Aggregates for Improving the Resolution of (R, S)-2-octanol. Chirality 2014; 27:199-204. [DOI: 10.1002/chir.22411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Liu
- National Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Chen Guo
- National Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Chun-Zhao Liu
- National Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
16
|
Patel M, Manvar T, Apurwa S, Ghosh A, Tiwari T, Chikara SK. Comparative de novo transcriptome analysis and metabolic pathway studies of Citrus paradisi flavedo from naive stage to ripened stage. Mol Biol Rep 2014; 41:3071-80. [PMID: 24477585 DOI: 10.1007/s11033-014-3166-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
Grapefruit (Citrus pardisi) is a popular citrus fruit that is a cross between a sweet orange and pummelo. This research article focuses on an in silico approach for comparative analysis of C. paradisi green flavedo (GF) and ethylene treated flavedo (ETF) transcriptome data. Our pathway analysis provides comprehensive information of genes playing significant role in different stages of ripening in fruit. De novo assembly was carried out using six different assemblers namely GS assembler, SeqMan NGEN, Velvet/Oases, CLC, iAssembler and Cortex followed by subsequent meta-assembly, annotation and pathway analysis. We conclude that de novo transcriptome assembly using meta-assembly approach is used to increase assembly quality in comparison to single assembler.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Genomics, Xcelris Genomics Research Centre, Ahmadabad, India
| | | | | | | | | | | |
Collapse
|
17
|
Nunes MAP, Fernandes PCB, Ribeiro MHL. High-affinity water-soluble system for efficient naringinase immobilization in polyvinyl alcohol-dimethyl sulfoxide lens-shaped particles. J Mol Recognit 2013; 25:580-94. [PMID: 23108618 DOI: 10.1002/jmr.2197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polyvinyl alcohol (PVA) is a water-soluble, biocompatible and biodegradable synthetic polymer whose application in the immobilization of biological agents for use in biocatalysis has shown promising results. This study aimed to investigate and optimize the immobilization of naringinase from Penicillium decumbens in PVA networks, targeting for the hydrolysis of naringin. Variables such as the most suitable cross-linker, catalyst, inorganic salt, co-solvents and solidification process were identified as key issues for PVA-based methods to form lens-shaped particles, while retaining high enzyme activity and stability. Major improvements were established for better and more reproducible immobilization conditions, namely, by designing a new immobilization apparatus to produce uniform lens-shaped particles. The common problems of PVA-based entrapment were significantly mitigated, through the use of selected cross-linker, glutaraldehyde (GA), and co-solvent, dimethyl sulfoxide (DMSO), which decreased the toxicity of the immobilization process and allowed the control of membrane porosity, respectively. The relevance of DMSO and GA and their interaction and effect on the swelling ratio, encapsulation efficiency and residual activity of PVA biocatalysts were established. The immobilization of naringinase in PVA under a DMSO concentration of 60%, cross-linked with 1% GA, and particle lens size of 3.5-4.0 mm, width of 100-300 µm and average particle volume of 12.5 ± 0.92 µL, allowed an encapsulation efficiency of 98.6% and an average residual activity of 87% ± 3.6%. The kinetic characterization of the immobilized naringinase showed no changes in pH profile, whereas hydrolytic activity increased up to 60 °C. Immobilization in PVA/DMSO/GA lens-shaped particles enhanced the storage stability of naringinase. Moreover, these naringinase bio-immobilizates retained a conversion rate higher than 78% after 23 runs.
Collapse
Affiliation(s)
- Mário A P Nunes
- Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, Portugal
| | | | | |
Collapse
|