1
|
Hormozi Jangi SR, Akhond M. Introducing a covalent thiol-based protected immobilized acetylcholinesterase with enhanced enzymatic performances for biosynthesis of esters. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
New insight into thermo-solvent tolerant lipase produced by Streptomyces sp. A3301 for re-polymerization of poly (dl-lactic acid). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Mehta A, Grover C, Bhardwaj KK, Gupta R. Application of Lipase Purified from Aspergillus fumigatus in the Syntheses of Ethyl Acetate and Ethyl Lactate. J Oleo Sci 2020; 69:23-29. [DOI: 10.5650/jos.ess19202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Akshita Mehta
- Department of Biotechnology, Himachal Pradesh University
| | - Chetna Grover
- Department of Biotechnology, Himachal Pradesh University
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|
4
|
Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Guo D, Kong S, Zhang L, Pan H, Wang C, Liu Z. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 269:577-580. [PMID: 30181019 DOI: 10.1016/j.biortech.2018.08.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Diminishing petroleum reserves and the rapid accumulation of greenhouse gases lead to increasing interest in microbial biofuels. In this study, a heterologous farnesyl acetate biosynthesis pathway was constructed in Escherichia coli for the first time. Firstly, the AtoB, ERG13, tHMG1, ERG12, ERG8, MVD1, Idi, IspA and PgpB were expressed to accumulate farnesol in the E. coli cells. Then the alcohol acetyltransferase (ATF1) was heterologous overexpressed for the subsequent esterification farnesol to farnesyl acetate. The engineered strain DG 106 accumulated 128 ± 10.5 mg/L of farnesyl acetate. Finally, the isopentenyl-diphosphate isomerase was further overexpressed, and the recombinant strain DG107 produced 201 ± 11.7 mg/L of farnesyl acetate. This study shows the novel method for the biosynthesis of the advanced biofuel farnesyl acetate directly from glucose and highlight the enormous designing strategies for metabolic engineering of bioproducts.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lihua Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
6
|
Martínez-Ruiz A, Tovar-Castro L, García HS, Saucedo-Castañeda G, Favela-Torres E. Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. BIORESOURCE TECHNOLOGY 2018; 265:52-58. [PMID: 29879651 DOI: 10.1016/j.biortech.2018.05.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Lipases produced by solid-state fermentation were used directly as biocatalysts for continuous synthesis of ethyl oleate in a continuously stirred tank reactor. The effect of biocatalyst reutilisation, molar ratio of substrates, agitation rate and feed rate on the esterification of oleic acid with ethanol were investigated. The catalyst maintained 90% conversion for four batch cycles with a 1:2 molar ratio (oleic acid:ethanol). Mechanical agitation at 200 and 300 rpm during 12 h of continuous reaction did not affect the biocatalytic conversion, allowing substrate conversions greater than 90% that were obtained with 50 mM oleic acid at a molar ratio of 1:2 during 14 h reaction. In contrast, substrate conversion was 70% with 100 mM oleic acid at a flow rate of 2 mL/min during 25 h of reaction. These results are promising and offer a technical alternative for the development of accessible biocatalysts that can be used in continuous operations.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City C.P. 09340, Mexico
| | - Luz Tovar-Castro
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, Mexico City C.P. 04960, Mexico
| | - Hugo Sergio García
- Instituto Tecnológico de Veracruz, Calzada Miguel Ángel de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Gerardo Saucedo-Castañeda
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City C.P. 09340, Mexico
| | - Ernesto Favela-Torres
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City C.P. 09340, Mexico.
| |
Collapse
|
7
|
Verma ML. Enzymatic Nanobiosensors in the Agricultural and Food Industry. SUSTAINABLE AGRICULTURE REVIEWS 2017. [DOI: 10.1007/978-3-319-53112-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Alves JS, Garcia-Galan C, Danelli D, Paludo N, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Verma ML, Puri M, Barrow CJ. Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 2014; 36:108-19. [DOI: 10.3109/07388551.2014.928811] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Alves JS, Garcia-Galan C, Schein MF, Silva AM, Barbosa O, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC. Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules 2014; 19:9562-76. [PMID: 25004067 PMCID: PMC6271129 DOI: 10.3390/molecules19079562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022] Open
Abstract
It is well established that the performance of lipase B from Candidaantarctica (CALB) as catalyst for esterification reactions may be improved by the use of ultrasound technology or by its immobilization on styrene-divinylbenzene beads (MCI-CALB). The present research evaluated the synthesis of butyl acetate using MCI-CALB under ultrasonic energy, comparing the results against those obtained using the commercial preparation, Novozym 435. The optimal conditions were determined using response surface methodology (RSM) evaluating the following parameters: reaction temperature, substrate molar ratio, amount of biocatalyst, and added water. The optimal conditions for butyl acetate synthesis catalyzed by MCI-CALB were: temperature, 48.8 °C; substrate molar ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both as substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h. In terms of operational stability, MCI-CALB was reused in seven cycles while keeping 70% of its initial activity under ultrasonic energy. The support pore size and resistance are key points for the enzyme activity and stability under mechanical stirring. The use of ultrasound improved both activity and stability because of better homogeneity and reduced mechanical stress to the immobilized system.
Collapse
Affiliation(s)
- Joana S Alves
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Cristina Garcia-Galan
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Mirela F Schein
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Alexandre M Silva
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | - Oveimar Barbosa
- Department of Biocatalysis, ICP-CSIC. Campus UAM-CSIC. Cantoblanco, ZC 28049, Madrid, Spain.
| | - Marco A Z Ayub
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| | | | - Rafael C Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul State, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre ZC 91501-970, RS, Brazil.
| |
Collapse
|
11
|
Fallavena LP, Antunes FHF, Alves JS, Paludo N, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC. Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Adv 2014. [DOI: 10.1039/c3ra47315e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Ghasemi S, Sadighi A, Heidary M, Bozorgi‐Koushalshahi M, Habibi Z, Faramarzi MA. Immobilisation of lipase on the surface of magnetic nanoparticles and non‐porous glass beads for regioselective acetylation of prednisolone. IET Nanobiotechnol 2013; 7:100-8. [DOI: 10.1049/iet-nbt.2012.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sabrieh Ghasemi
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Armin Sadighi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| | - Marjan Heidary
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Maryam Bozorgi‐Koushalshahi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| | - Zohreh Habibi
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| |
Collapse
|
13
|
Verma ML, Barrow CJ, Puri M. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 2012; 97:23-39. [DOI: 10.1007/s00253-012-4535-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 12/01/2022]
|