1
|
Zhang H, Jia L, Cui P, Zhou L, Yin Q. Effects of various parameters on solution-mediated phase transformation of calcium d-gluconate: an approach to obtain pure metastable monohydrate. RSC Adv 2023; 13:12175-12183. [PMID: 37091620 PMCID: PMC10114048 DOI: 10.1039/d3ra01424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
The high risk of solution-mediated phase transformation (SMPT) from the metastable monohydrate to stable Form I makes it difficult to produce pure metastable monohydrate of calcium d-gluconate. In this work, we explored the effect of various operating parameters on the SMPT of calcium d-gluconate in water and proposed an effective approach to obtain the desired monohydrate. First, the two forms of calcium d-gluconate were characterized and compared using powder X-ray diffraction (PXRD), thermal analysis, and Raman spectroscopy. The lower solubility of Form I in water illustrates its higher thermodynamic stability than monohydrate when the temperature is higher than 292 K. Afterward, the SMPT of calcium d-gluconate from monohydrate to Form I was investigated in water using in situ Raman spectroscopy combined with scanning electron microscopy and PXRD. Results showed that the nucleation and growth of Form I was the rate-limiting step in the SMPT from monohydrate to Form I. The phase transformation from monohydrate to Form I was delayed to produce pure monohydrate by decreasing temperature and agitation rate, reducing the amount of solid loading, and increasing the particle size of solid loading. Furthermore, the transformation kinetics were studied by the JMA model to explore how temperature influences the SMPT process. This study enriches the study of the calcium d-gluconate SMPT mechanism, and also provides guidance for obtaining high-quality injection-grade calcium gluconate monohydrate.
Collapse
Affiliation(s)
- Hang Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300072 People's Republic of China
| | - Lihong Jia
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300072 People's Republic of China
| | - Pingping Cui
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300072 People's Republic of China
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300072 People's Republic of China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300072 People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300072 China
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency Tianjin 300072 People's Republic of China
| |
Collapse
|
2
|
Yang Q, Zhao Z, Zhao W, Chen Y, Chen Y, Shi J, Ni Q, Cao Y, Sun X, Wang H, Yuan H, Wang R, Sun W. A rescue diet raises the plasma calcium concentration and ameliorates rheumatoid arthritis in mice: Role of CaSR-mediated inhibition of osteoclastogenesis. FASEB J 2023; 37:e22673. [PMID: 36468692 DOI: 10.1096/fj.202200761rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Calcium modulates bone cell recruitment, differentiation, and function by binding to the calcium-sensing receptor (CaSR). However, the function of CaSR induced by high extracellular calcium (Ca2+ e ) in the regulation of osteoclast formation in rheumatoid arthritis (RA) remains unknown. Here, we used TNFα-transgenic (TNFTG ) RA mice and their wildtype (WT) littermates fed a normal or a rescue diet (high calcium, high phosphorus, and high lactose diet, termed rescue diet) to compare their joint bone phenotypes. In comparison to TNFTG mice fed the normal diet, articular bone volume and cartilage area are increased, whereas inflamed area, eroded surface, TRAP+ surface, and osteoclast-related genes expression are decreased in TNFTG mice fed the rescue diet. Besides, TNFTG mice fed the rescue diet were found to exhibit more CaSR+ area and less NFATc1+ /TRAP+ area. Furthermore, at normal Ca2+ e concentrations, osteoclast precursors (OCPs) from TNFTG mice formed more osteoclasts than OCPs from WT mice, but the number of osteoclasts gradually decreased when the Ca2+ e concentration increased. Meanwhile, the expression of CaSR increased responding to a high level of Ca2+ e , whereas the expression of NF-κB/NFATc1 signaling molecules decreased. At last, the knockdown of CaSR blocked the inhibition of osteoclast differentiation attributed to high Ca2+ e . Taken together, our findings indicate that high Ca2+ e inhibits osteoclast differentiation in RA mice partially through the CaSR/NF-κB/NFATc1 pathway.
Collapse
Affiliation(s)
- Qiudong Yang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziwei Zhao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wenhua Zhao
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuyi Chen
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiali Shi
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanan Cao
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Yuan
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
3
|
Kurimoto T, Tamai I, Nakagawa T, Miyai A, Yamamoto Y, Kosugi Y, Deai K, Hata T, Ohta T, Matsushita M, Yamada T. JTP-117968, a novel selective glucocorticoid receptor modulator, exhibits significant anti-inflammatory effect while maintaining bone mineral density in mice. Eur J Pharmacol 2021; 895:173880. [PMID: 33476654 DOI: 10.1016/j.ejphar.2021.173880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Classic glucocorticoids have been prescribed for various inflammatory diseases, such as rheumatoid arthritis, due to their outstanding anti-inflammatory effects. However, glucocorticoids cause numerous unwanted side effects, including osteoporosis and diabetes. Hence, selective glucocorticoid receptor modulators (SGRMs), which retain anti-inflammatory effects with minimized side effects, are among the most anticipated drugs in the clinical field. The assumption is that there are two major mechanisms of action via glucocorticoid receptors, transrepression (TR) and transactivation (TA). In general, anti-inflammatory effects of glucocorticoids are largely due to TR, while the side effects associated with glucocorticoids are mostly mediated through TA. We previously reported that JTP-117968, a novel SGRM, maintained partial TR activity while remarkably reducing the TA activity. In this study, we investigated the anti-inflammatory effect of JTP-117968 on a lipopolysaccharide (LPS) challenge model and collagen-induced arthritis (CIA) model in mice. Meanwhile, we tested the effect of JTP-117968 on the bone mineral density (BMD) in mouse femur to evaluate the side effect. Based on the evaluation, JTP-117968 reduced the plasma levels of tumor necrosis factor α induced by LPS challenge in mice significantly. Remarkably, CIA development was suppressed by JTP-117968 comparably with prednisolone and PF-802, an active form of fosdagrocorat that has been developed clinically as an orally available SGRM. Strikingly, the side effect of JTP-117968 on mouse femoral BMD was much lower than those of PF-802 and prednisolone. Therefore, JTP-117968 has attractive potential as a new therapeutic option against inflammatory diseases with minimized side effects compared to classic glucocorticoids.
Collapse
Affiliation(s)
- Takafumi Kurimoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan.
| | - Isao Tamai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takashi Nakagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Atsuko Miyai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Yasuo Yamamoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Yoshinori Kosugi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Katsuya Deai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Takahisa Yamada
- Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan
| |
Collapse
|
5
|
Chough C, Lee S, Joung M, Lee J, Kim JH, Kim BM. Design, synthesis and evaluation of ( R)-3-(7-(methyl(7 H-pyrrolo[2,3- d]pyrimidin-4-yl)amino)-5-azaspiro[2.4]heptan-5-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. MEDCHEMCOMM 2018; 9:477-489. [PMID: 30108938 PMCID: PMC6072502 DOI: 10.1039/c7md00568g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Based on (R)-N-methyl-N-(5-azaspiro[2.4]heptan-7-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a core scaffold, we identified (R)-3-(7-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-5-azaspiro[2.4]heptan-5-yl)-3-oxopropanenitrile [(R)-6c] as a JAK1 selective inhibitor. The structural design was based on the combination of tofacitinib's 7-deazapurine and 5-azaspiro[2.4]heptan-7-amine. Compound (R)-6c exhibited an IC50 value of 8.5 nM against JAK1 with a selectivity index of 48 over JAK2. To optimize (R)-6c as a lead compound, we performed in vitro ADME, hERG, kinase profiling, and pharmacokinetic tests. Mouse and rat in vivo studies verified that (R)-6c exhibited desired efficacies in CIA and AIA models.
Collapse
Affiliation(s)
- Chieyeon Chough
- Department of Chemistry , College of Natural Sciences , Seoul National University , Seoul 08876 , South Korea .
| | - Sunmin Lee
- Yang Ji Chemical Co., Ltd. , Gyeonggi Bio-Center , Suwon , Gyeonggi-do 16229 , South Korea
| | - Misuk Joung
- Yang Ji Chemical Co., Ltd. , Gyeonggi Bio-Center , Suwon , Gyeonggi-do 16229 , South Korea
| | - Jaemin Lee
- Yang Ji Chemical Co., Ltd. , Gyeonggi Bio-Center , Suwon , Gyeonggi-do 16229 , South Korea
| | - Jong Hoon Kim
- Han Wha Pharma Co., Ltd. , 109, Yagam-gil, Nam-myeon , Chuncheon , Gangwon-do 24468 , South Korea
| | - B Moon Kim
- Department of Chemistry , College of Natural Sciences , Seoul National University , Seoul 08876 , South Korea .
| |
Collapse
|
6
|
The Effects of Topical Application of Polycal (a 2:98 (g/g) Mixture of Polycan and Calcium Gluconate) on Experimental Periodontitis and Alveolar Bone Loss in Rats. Molecules 2016; 21:527. [PMID: 27110759 PMCID: PMC6274269 DOI: 10.3390/molecules21040527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to observe whether Polycal has inhibitory activity on ligation-induced experimental periodontitis and related alveolar bone loss in rats following topical application to the gingival regions. One day after the ligation placements, Polycal (50, 25, and 12.5 mg/mL solutions at 200 μL/rat) was topically applied to the ligated gingival regions daily for 10 days. Changes in bodyweight, alveolar bone loss index, and total number of buccal gingival aerobic bacterial cells were monitored, and the anti-inflammatory effects were investigated via myeloperoxidase activity and levels of the pro-inflammatory cytokines IL-1β and TNF-α. The activities of inducible nitric oxide synthase (iNOS) and lipid peroxidation (MDA) were also evaluated. Bacterial proliferation, periodontitis, and alveolar bone loss induced by ligature placements were significantly inhibited after 10 days of continuous topical application of Polycal. These results indicate that topical application of Polycal has a significant inhibitory effect on periodontitis and related alveolar bone loss in rats mediated by antibacterial, anti-inflammatory, and anti-oxidative activities.
Collapse
|
7
|
Wang L, Guan N, Jin Y, Lin X, Gao H. Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine model. Int Immunopharmacol 2015; 25:65-73. [PMID: 25604387 DOI: 10.1016/j.intimp.2015.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 01/17/2023]
Abstract
To date, Porphyromonas gingivalis (P. gingivalis) vaccination has been studied only in animals, and no effective prophylactic human periodontal vaccine has been developed, with the reason for the failure of prophylactic human periodontal vaccines unknown. T helper 17 cell (Th17)/regulatory T (Treg) cell responses play an important role in the development of periodontitis, and a Th17/Treg imbalance causes the pathogenesis of periodontitis. However, whether vaccination with P. gingivalis can prevent periodontitis through modulation of the Th17/Treg imbalance remains unknown. In this study, mice were subcutaneously vaccinated with formalin-killed P. gingivalis and then orally challenged with P. gingivalis. The vaccination protected the mice from alveolar bone resorption and inflammation. These protective effects might be ascribed to downregulation of Th17 cells and interleukin (IL)-17A production, upregulation of Treg and receptor activator of nuclear factor-kappa B ligand (RANKL)(+)CD4(+)T cells, and IL-10 and transforming growth factor-β1 production, and inhibition of lymphocyte proliferation. Our findings may provide a direction for the development of a vaccine or therapy against periodontitis by alteration of the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Periodontics, School of Stomatology of Liaoning Medical College, Jinzhou, Liaoning, China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning, China
| | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Hong Gao
- Key Laboratory of Congenital Malformation Research, Ministry of Health, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|