1
|
Yuan B, Wang R, Gao Z, Mirzeei H, Xiang AD, Guo F. Silymarin plus doxorubicin exerts the anti-hepatocellular carcinoma effects via Wnt, apoptosis, autophagy and angiogenesis pathways. Mol Cell Probes 2025; 81:102022. [PMID: 40049299 DOI: 10.1016/j.mcp.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The biggest cause of death worldwide is liver cancer. Despite several initiatives and successes in treatment techniques, only a little improvement has been attained. In order to control this cancer, new therapeutic strategies are therefore required. Here, we evaluated the effects of doxorubicin and the milk thistle plant phytochemical Silymarin on liver cancer through apoptosis, autophagy, and Wnt signaling. METHODS Silymarin both alone and together with doxorubicin was administered to induce cytotoxicity in the H22 cell line. qRT-PCR and Western blot analyses, the genes related to autophagy, Wnt signals, and cell death were examined. RESULTS Doxorubicin and Silymarin both individually and combined dramatically slowed down H22 cells growth. Additionally, there was a significant drop in the Bcl-2 protein and a considerable rise in the caspase 8 and Bax proteins. LC3-I, LC3-II, and Beclin 1 have been all shown to be significantly elevated. Moreover, there was a substantial decrease in the expression of genes involved in the Wnt pathway, including cyclin D1, β-catenin, ZEB1, and Twist. The levels of AMPK were decreased in Silymarin with Doxorubicin alone and in combination, whereas VASP, VEGF, and HIF-1a were lowest. CONCLUSION Silymarin may enhance anti-tumor effects of doxorubicin through modulating autophagy, angiogenesis, and apoptosis, in-vitro.
Collapse
Affiliation(s)
- Baohong Yuan
- Department of General Surgery, Yan'An Hospital Affiliated to Kunming Medical University, The Key Laboratory of Tumour Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Ruotian Wang
- Department of General Surgery, Yan'An Hospital Affiliated to Kunming Medical University, The Key Laboratory of Tumour Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Zehai Gao
- Department of General Surgery II, The Affiliated Hospital of Yunnan University, Kunming, 650032, China
| | - Hameed Mirzeei
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - An-Dong Xiang
- Department of General Surgery II, The Affiliated Hospital of Yunnan University, Kunming, 650032, China.
| | - Feng Guo
- Clinical Skills Training Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
2
|
Al-Haideri M. Silymarin suppresses proliferation and PD-L1 expression in colorectal cancer cells and increases inflammatory CD8+ cells in tumor-bearing mice. Clin Res Hepatol Gastroenterol 2024; 48:102425. [PMID: 39048076 DOI: 10.1016/j.clinre.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Silymarin as an herbal medicine has shown anticancer effects on tumor cells, while having low toxicity in normal cells. In this study, the effects of Silymarin on proliferation and apoptosis of colorectal cancer cells and its impact on immune response against cancer cells were evaluated in vitro and in vivo. METHODS AND MATERIALS The effect of Silymarin on CT-26 and Caco-2 cells proliferation and apoptosis were demonstrated by MTT assay and PI staining. A subcutaneous tumor of colorectal cancer was developed. Silymarin and Doxorubicin were administrated by intravenous injection. qRT-PCR analyses was performed on blood samples and tumor tissues. Spleen tissue was used to evaluate CD8+ T cell immune responses. Histological study was carried out on tumor tissues. RESULTS Silymarin showed anti-proliferative effects on CT-26 and Caco-2 cells. The markers of immunogenic cell death (Calreticulin exposure, ATP secretion, and HMGB1 secretion) significantly increased in both cell lines in the presence of silymarin. The expression of genes related to cell proliferation particularly β-Catenin and Cycline D1, and also anti-apoptotic ones such as Bcl-2 significantly reduced in mice treated with Silymarin while the expression of pro-apoptotic Bax increased. The RNA level of PD-L1 decreased in tumor tissues exposed by Silymarin. Moreover, the number of CTLs increased in the spleen of mice treated with Silymarin in comparison with untreated mice. Decreased tumor size and also survival of colorectal cancer cells in Silymarin-treated mice were observed in histological analysis. CONCLUSION Silymarin treatment showed a suppressive role on colorectal cancer cells almost as much as Doxorubicin. Our study indicated that having a low toxicity profile, cost-effectiveness, and availability of raw materials, plant-derived Silymarin can be a good candidate for further investigation to treat CRC.
Collapse
Affiliation(s)
- Maysoon Al-Haideri
- School of medicine, Pharmacy Department, University of Kurdistan Hawlêr, Erbil, Kurdistan, Iraq.
| |
Collapse
|
3
|
Chai Y, Liu JL, Zhang S, Li N, Xu DQ, Liu WJ, Fu RJ, Tang YP. The effective combination therapies with irinotecan for colorectal cancer. Front Pharmacol 2024; 15:1356708. [PMID: 38375031 PMCID: PMC10875015 DOI: 10.3389/fphar.2024.1356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer is the third most common type of cancer worldwide and has become one of the major human disease burdens. In clinical practice, the treatment of colorectal cancer has been closely related to the use of irinotecan. Irinotecan combines with many other anticancer drugs and has a broader range of drug combinations. Combination therapy is one of the most important means of improving anti-tumor efficacy and overcoming drug resistance. Reasonable combination therapy can lead to better patient treatment options, and inappropriate combination therapy will increase patient risk. For the colorectal therapeutic field, the significance of combination therapy is to improve the efficacy, reduce the adverse effects, and improve the ease of treatment. Therefore, we explored the clinical advantages of its combination therapy based on mechanism or metabolism and reviewed the rationale basis and its limitations in conducting exploratory clinical trials on irinotecan combination therapy, including the results of clinical trials on the combination potentiation of cytotoxic drugs, targeted agents, and herbal medicine. We hope that these can evoke more efforts to conduct irinotecan in the laboratory for further studies and evaluations, as well as the possibility of more in-depth development in future clinical trials.
Collapse
Affiliation(s)
- Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jing-Li Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
4
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
5
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
7
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
8
|
Silibinin suppresses TGFβ2-induced lens epithelial cell migration and epithelial–mesenchymal transition. J Biosci 2022. [DOI: 10.1007/s12038-022-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
10
|
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AM, Ming LC, Goh KW, Hadi MA. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022; 14:cancers14071732. [PMID: 35406504 PMCID: PMC8996939 DOI: 10.3390/cancers14071732] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer. Global incidence and mortality are likely to be increased in the coming decades. Although the deaths associated with CRC are very high in high-income countries, the incidence and fatalities related to CRC are growing in developing countries too. CRC detected early is entirely curable by surgery and subsequent medications. However, the recurrence rate is high, and cancer drug resistance increases the treatment failure rate. Access to early diagnosis and treatment of CRC for survival is somewhat possible in developed countries. However, these facilities are rarely available in developing countries. Highlighting the current status of CRC, its development, risk factors, and management is crucial in creating public awareness. Therefore, in this review, we have comprehensively discussed the current global epidemiology, drug resistance, challenges, risk factors, and preventive and treatment strategies of CRC. Additionally, there is a brief discussion on the CRC development pathways and recommendations for preventing and treating CRC.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (M.S.H.); (L.C.M.); Tel.: +60-1169609649 (M.S.H.); +673-246-0922 (ext. 2202) (L.C.M.)
| | - Hidayah Karuniawati
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia
| | - Ammar Abdulrahman Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - K. M. Kaderi Kibria
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - A.K. M. Mohiuddin
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
- Correspondence: (M.S.H.); (L.C.M.); Tel.: +60-1169609649 (M.S.H.); +673-246-0922 (ext. 2202) (L.C.M.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | | |
Collapse
|
11
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2021; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
15
|
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117:109142. [DOI: 10.1016/j.biopha.2019.109142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
|
16
|
Kim SH, Choo GS, Yoo ES, Woo JS, Han SH, Lee JH, Jung JY. Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncol Rep 2019; 42:1904-1914. [PMID: 31485597 PMCID: PMC6775811 DOI: 10.3892/or.2019.7295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is regarded as a therapeutic target because it is typically disturbed in human cancer. Silymarin from milk thistle (Silybum marianum) has been reported to exhibit anticancer properties via regulation of apoptosis as well as anti-inflammatory, antioxidant and hepatoprotective effects. In the present study, the effects of silymarin on the inhibition of proliferation and apoptosis were examined in human gastric cancer cells. The viability of AGS human gastric cancer cells was assessed by MTT assay. The migration of AGS cells was investigated by wound healing assay. Silymarin was revealed to significantly decrease viability and migration of AGS cells in a concentration-dependent manner. In addition, the number of apoptotic bodies and the rate of apoptosis were increased in a dose-dependent manner as determined by DAPI staining and Annexin V/propidium iodide double staining. The changes in the expression of silymarin-induced apoptosis proteins were investigated in human gastric cancer cells by western blotting analysis. Silymarin increased the expression of Bax, phosphorylated (p)-JNK and p-p38, and cleaved poly-ADP ribose polymerase, and decreased the levels of Bcl-2 and p-ERK1/2 in a concentration-dependent manner. The in vivo tumor growth inhibitory effect of silymarin was investigated. Silymarin (100 mg/kg) significantly decreased the AGS tumor volume and increased apoptosis, as assessed by the TUNEL assay, confirming its tumor-inhibitory effect. Immunohistochemical staining revealed elevated expression of p-JNK and p-p38 as well as reduced expression of p-ERK1/2 associated with silymarin-treatment. Silymarin was revealed to reduce tumor growth through inhibition of p-ERK and activation of p-p38 and p-JNK in human gastric cancer cells. These results indicated that silymarin has potential for development as a cancer therapeutic due to its growth inhibitory effects and induction of apoptosis in human gastric cancer cells.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Gang-Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Eun-Seon Yoo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340‑702, Republic of Korea
| |
Collapse
|
17
|
Xu F, Han C, Li Y, Zheng M, Xi X, Hu C, Cui X, Cao H. The Chemical Constituents and Pharmacological Actions of Silybum Marianum. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180327155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents the chemical constituents and pharmacological actions of Silybum marianum. These chemical constituents include flavonolignans, fatty acids, phenolics and other chemical constituents. Furthermore, flavonolignans constituents include silymarin isosilychristin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B, etc. Pharmacological actions include a well curative effect on non-alcoholic steatohepatitis, UV damage, varieties of cancers, diabetes. In addition, its pharmacological actions include anti-inflammatory, anti-depression and more pharmacological actions. This paper will enable Silybum marianum lay the foundation for producing high and sustainable productions in the future.
Collapse
Affiliation(s)
- Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chaoqun Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
18
|
Amawi H, Hussein NA, Ashby CR, Alnafisah R, Sanglard LM, Manivannan E, Karthikeyan C, Trivedi P, Eisenmann KM, Robey RW, Tiwari AK. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis. Front Pharmacol 2018; 9:520. [PMID: 29875662 PMCID: PMC5974752 DOI: 10.3389/fphar.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a−15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, β-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, United States
| | - Rawan Alnafisah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Leticia M Sanglard
- Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | | | | | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Robert W Robey
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
19
|
Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem 2018; 441:109-124. [PMID: 28887754 PMCID: PMC5843697 DOI: 10.1007/s11010-017-3178-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022]
Abstract
Lichens are a source of secondary metabolites which possess important biological activities, including antioxidant, antibacterial, anti-inflammatory, and cytotoxic effects. The anticancer activity of lichens was shown in many types of tumors, including colorectal cancers (CRC). Several studies revealed that the application of lichen extracts diminished the proliferation of CRC cells and induced apoptosis. Colon carcinogenesis is associated with aberrations in Wnt signaling. Elevated transcriptional activity of β-catenin induces cell survival, proliferation, and migration. Thus, the inhibition of Wnt signaling is a promising therapeutic strategy in colorectal cancer. The aim of this study was the evaluation of the effects of lichen-derived depsides (atranorin, lecanoric acid, squamatic acid) and depsidones (physodic acid, salazinic acid) and a poly-carboxylic fatty acid-caperatic acid, on Wnt signaling in HCT116 and DLD-1 colorectal cancer cell lines. HCT116 cells were more sensitive to the modulatory effects of the compounds. PKF118-310, which was used as a reference β-catenin inhibitor, dose-dependently reduced the expression of the classical β-catenin target gene-Axin2 in both cell lines. Lecanoric acid slightly reduced Axin2 expression in HCT116 cells while caperatic acid tended to reduce Axin2 expression in both cell lines. Physodic acid much more potently decreased Axin2 expression in HCT116 cells than in DLD-1 cells. Physodic acid and caperatic acid also diminished the expression of survivin and MMP7 in a cell line and time-dependent manner. None of the compounds affected the nuclear translocation of β-catenin. This is the first report showing the ability of caperatic acid and physodic acid to modulate β-catenin-dependent transcription.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland.
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznan, Poland
| |
Collapse
|
20
|
Chen M, Liu YY, Zheng MQ, Wang XL, Gao XH, Chen L, Zhang GM. microRNA-544 promoted human osteosarcoma cell proliferation by downregulating AXIN2 expression. Oncol Lett 2018; 15:7076-7082. [PMID: 29725431 PMCID: PMC5920246 DOI: 10.3892/ol.2018.8218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRNAs) perform various oncogenic or tumor suppressor functions in carcinogenesis. Currently, the underlying mechanisms of miRNAs in osteosarcoma (OS) are poorly understood. In the present study, it is demonstrated that expression of miR-544 was markedly upregulated in OS cells and clinical tissues. Furthermore, overexpression of miR-544 enhanced OS cell proliferation in vitro. Bioinformatics analysis indicated that miR-544 may target the 3′-untranslated region of axis formation inhibitor 2, which was validated using luciferase reporter gene assays. The present study demonstrated a vital role for miR-544 in promoting OS cell proliferation, indicating that it may represent a novel prognostic factor or therapeutic target for OS.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yong-Yi Liu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Min-Qing Zheng
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xin-Liang Wang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xing-Hua Gao
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Lin Chen
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Guang-Ming Zhang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
21
|
Amawi H, Hussein NA, Karthikeyan C, Manivannan E, Wisner A, Williams FE, Samuel T, Trivedi P, Ashby CR, Tiwari AK. HM015k, a Novel Silybin Derivative, Multi-Targets Metastatic Ovarian Cancer Cells and Is Safe in Zebrafish Toxicity Studies. Front Pharmacol 2017; 8:498. [PMID: 28824426 PMCID: PMC5539246 DOI: 10.3389/fphar.2017.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
This study was designed to determine the in vitro mechanisms by which the novel silybin derivative, (E)-3-(3-(benzyloxy) phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (HM015k or 15k), produces its anticancer efficacy in ovarian cancer cells. Compound 15k induced apoptosis in ovarian cancer cells in a time-dependent manner by significantly upregulating the expression of Bax and Bak and downregulating the expression of Bcl-2. Interestingly, 15k induced the cleavage of Bax p21 into its more efficacious cleaved form, Bax p18. In addition, caspase 3 and caspase 9 were cleaved to their active forms, inducing the cleavage of poly ADP ribose polymerase (PARP) and β-catenin. Furthermore, in OV2008 cells, 15k induced significant cleavage in nuclear β-catenin to primarily inactive fragments of lower molecular weight. Furthermore, 15k reversed the metastatic potential of OV2008 cells by inhibiting their migration and invasiveness. The mesenchymal phenotype in OV2008 was reversed by 15k, causing cells to be rounder with epithelial-like phenotypes. The 15k-induced reversal was further confirmed by significant upregulation of the E-cadherin expression, an epithelial marker, while N-cadherin, a mesenchymal marker, was downregulated in OV2008 cells. Compound 15k inhibited the expression of the oncogenic c-Myc protein, downregulated proteins DVL3 and DVL2 and significantly upregulated cyclin B1. Also, 15k significantly downregulated the expression levels of ABCG2 and ABCB1 transporters in resistant ABCG2 overexpressing H460/MX20 and resistant ABCB1 overexpressing MDCK/MDR1 cells, respectively. Finally, 15k was safe in zebrafish in vivo model at concentrations up to 10 μM and induced no major toxicities in cardiac, morphology and swimming position parameters. Overall, 15k is a multi-targeted inhibitor with efficacy against metastatic and resistant ovarian cancer. Future in vivo studies will be conducted to determine the efficacy of 15k in tumor-bearing animals.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | | | | | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| | - Temesgen Samuel
- Department of Pathobiology, School of Veterinary Medicine, Tuskegee UniversityTuskegee, AL, United States
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki VishwavidyalayaBhopal, India
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University QueensNew York, NY, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, United States
| |
Collapse
|