1
|
Kang GJ, Park JH, Kim HJ, Kim EJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Kim KS, Huy HP, Rahman M, Kim YH, Jang JY, Park MK, Lee H, Choi CI, Lee K, Han HK, Cho J, Rho SB, Lee CH. PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase. Biomol Ther (Seoul) 2022; 30:340-347. [PMID: 35719027 PMCID: PMC9252882 DOI: 10.4062/biomolther.2022.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jung Ho Park
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Lu Yu
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Kyung Sung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hiệu Phùng Huy
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Mostafizur Rahman
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ye Hyeon Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ji Yun Jang
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.,National Cancer Center, Goyang 10408, Republic of Korea
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Chang Ick Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyo Kyung Han
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Yu L, Kim HJ, Park MK, Byun HJ, Kim EJ, Kim B, Nguyen MT, Kim JH, Kang GJ, Lee H, Kim SY, Rho SB, Lee CH. Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem Pharmacol 2020; 183:114339. [PMID: 33189676 DOI: 10.1016/j.bcp.2020.114339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-β1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-β1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.
Collapse
Affiliation(s)
- Lu Yu
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Minh Tuan Nguyen
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Ji Hyun Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Soo Youl Kim
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea.
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
3
|
Sun S, Dong H, Yan T, Li J, Liu B, Shao P, Li J, Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:139. [PMID: 32600280 PMCID: PMC7325168 DOI: 10.1186/s12881-020-01073-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Background Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. Methods Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. Results A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87–2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77–2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. Conclusions Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
5
|
Kim EJ, Park MK, Kang GJ, Byun HJ, Kim HJ, Yu L, Kim B, Chae HS, Chin YW, Shim JG, Lee H, Lee CH. YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A. JOURNAL OF ONCOLOGY 2019; 2019:3542537. [PMID: 31485224 PMCID: PMC6702825 DOI: 10.1155/2019/3542537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
Lung cancer is the number 1 cause of cancer-related casualties in the world. Appropriate diagnostic markers and novel targets for lung cancer are needed. Chitooligosaccharide deacetylase homolog (YDJC) catalyzes the deacetylation of acetylated carbohydrates; however, the role of YDJC in lung cancer progression has yet to be studied. A549 lung cancer orthotopic mouse model was used for mice experiments. We found that YDJC overexpression contributes to lung cancer progression in an orthotopic mouse model. Long-term treatment (48 h) induces YDJC expression in sphingosylphosphorylcholine (SPC)-induced epithelial-mesenchymal transition (EMT). Gene silencing of YDJC (siYDJC) reduced N-cadherin expression and increased E-cadherin expression in SPC-induced EMT. Overexpression of YDJC reverses them but overexpression of the deacetylase deficient mutant YDJCD13A could not. Interestingly, overexpression of CDC16, a YDJC binding partner, suppressed EMT. ERK2 is activated in siCDC16-induced EMT. YDJC overexpression reduces expression of protein phosphatase 2A (PP2A), whereas CDC16 overexpression induces PP2A expression. YDJC overexpression induced ubiquitination of PP2A but YDJCD13A could not. CDC16 overexpression increased the ubiquitination of YDJC. These results suggest that YDJC contributes to the progression of lung cancer via enhancing EMT by inducing the ubiquitination of PP2A. Therefore, YDJC might be a new target for antitumor therapy against lung cancer.
Collapse
Affiliation(s)
- Eun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Gyeoung-Jin Kang
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Jung Byun
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Lu Yu
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Boram Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hee-Sung Chae
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Young-Won Chin
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Jae Gal Shim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| |
Collapse
|
6
|
Kim EJ, Park MK, Byun HJ, Kang GJ, Yu L, Kim HJ, Shim JG, Lee H, Lee CH. YdjC chitooligosaccharide deacetylase homolog induces keratin reorganization in lung cancer cells: involvement of interaction between YDJC and CDC16. Oncotarget 2018; 9:22915-22928. [PMID: 29796162 PMCID: PMC5955423 DOI: 10.18632/oncotarget.25145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/03/2018] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is a fatal disease with a high mortality rate. The perinuclear reorganization of keratin 8 (K8) is an important biochemical phenomenon reflecting changes in the physical properties of metastatic cancer. However, there is not much of information about the regulatory molecules involved in phosphorylation and perinuclear reorganization of K8. In this study, we investigated the role and molecular mechanisms of YdjC chitooligosaccha- ride deacetylase homolog (YDJC) in sphingosylphosphorylcholine (SPC)-induced phosphorylation and reorganization of K8, and migration and invasion (SPC-induced events). SPC induced expression of YDJC in a dose- and time-dependent manner. Gene silencing of YDJC suppressed SPC-induced events. YDJC overexpression induced the SPC-induced events. YDJC deacetylase dominant negative mutant (YDJCD13A) did not induce SPC-induced events. YDJC siRNA reduced ERK activation and overexpression of YDJC induced ERK activation. The siRNA of ERK1 or ERK2 suppressed YDJC-induced phosphorylation and reorganization of K8, and migration and invasion. Co-immunoprecipitation revealed that YDJC binds to CDC16. Interestingly, CDC16 siRNA induced SPC-induced events. Overexpression of CDC16 blocked SPC-induced events. KMPLOT analysis based on public microarray data revealed the poor prognosis of lung cancer patients with high expression of YDJC compared with patients with low expression of YDJC. The collective results indicate that YDJC is involved in SPC-induced events in A549 lung cancer cells by interacting with CDC16. YDJC overexpression might be involved in the progression of lung cancer. These results also suggest that suppression of YDJC or boosting of CDC16 interaction with YDJC might be a novel way to prevent progression of lung cancer.
Collapse
Affiliation(s)
- Eun Ji Kim
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | | | - Hyun Jung Byun
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gyeoung Jin Kang
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Lu Yu
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jae Gal Shim
- National Cancer Center, Goyang, 10408, South Korea
| | - Ho Lee
- National Cancer Center, Goyang, 10408, South Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
7
|
Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer. DISEASE MARKERS 2017; 2017:1202710. [PMID: 29445249 PMCID: PMC5763208 DOI: 10.1155/2017/1202710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
Abstract
Deregulation of G protein-coupled receptor kinase 3 (GRK3), which belongs to a subfamily of kinases called GRKs, acts as a promoter mechanism in some cancer types. Our study found that GRK3 was significantly overexpressed in 162 pairs of colon cancer tissues than in the matched noncancerous mucosa (P < 0.01). Based on immunohistochemistry staining of TMAs, GRK3 was dramatically stained positive in primary colon cancer (130/180, 72.22%), whereas it was detected minimally or negative in paired normal mucosa specimens (50/180, 27.78%). Overexpression of GRK3 was closely correlated with AJCC stage (P = 0.001), depth of tumor invasion (P < 0.001), lymph node involvement (P = 0.004), distant metastasis (P = 0.016), and histologic differentiation (P = 0.004). Overexpression of GRK3 is an independent prognostic indicator that correlates with poor survival in colon cancer patients. Consistent with this, downregulation of GRK3 exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate, and impaired colon tumorigenicity in a xenograft model. Hence, a specific overexpression of GRK3 was observed in colon cancer, GRK3 potentially contributing to progression by mediating cancer cell proliferation and functions as a poor prognostic indicator in colon cancer and potentially represent a novel therapeutic target for the disease.
Collapse
|
8
|
SETDB1-mediated FosB regulation via ERK2 is associated with an increase in cell invasiveness during anticancer drug treatment of A549 human lung cancer cells. Biochem Biophys Res Commun 2017; 495:512-518. [PMID: 29108991 DOI: 10.1016/j.bbrc.2017.10.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023]
Abstract
We have determined a functional link to the inverse expression of SETDB1 and FosB following anticancer drug treatment. Doxorubicin treatment caused decreased SETDB1 expression and FosB overexpression both at the mRNA and protein levels. The decreased HMTase activity of SETDB1 coincided with altered occupancy across the promoter region of the FosB gene. SETDB1 overexpression decreased the luciferase reporter activity containing the FosB promoter region, but siSETDB1 increased the luciferase reporter activity, suggesting that SETDB1 directly and negatively regulated FosB expression. In addition, MEK inhibitor (PD98059) blocked the SETDB1 regulation of the FosB promoter activity via ERK2 activation during doxorubicin treatment. A microscopic analysis reveals that FosB expression was observed in living cells in spite of doxorubicin treatment. Ectopic FosB/ΔFosB expression increased the number of colonies and the migration of A549 cells compared to that in control. These results suggest that the ERK2-SETDB1-FosB signaling pathway might have an anti-therapeutic regulatory mechanism that increases the transformation and migration activity of cancer cells during anticancer drug treatment.
Collapse
|